## DATA SHEET

## 74ALVCH32501 36-bit universal bus transceiver with direction pin; 5 V tolerant; 3-state

File under Integrated Circuits, IC24

## 36-bit universal bus transceiver with direction pin; 5 V tolerant; 3-state

## FEATURES

- 3-state non-inverting outputs for bus oriented applications
- Wide supply voltage range of 1.2 to 3.6 V
- Complies with JEDEC standard no. 8-1A
- Current drive $\pm 24 \mathrm{~mA}$ at 3.0 V
- Universal bus transceiver with D-type latches and D-type flip-flops capable of operating in transparent, latched or clocked mode
- CMOS low power consumption
- Direct interface with TTL levels
- All inputs have bus-hold circuitry
- Output drive capability $50 \Omega$ transmission lines at $85^{\circ} \mathrm{C}$
- Plastic fine-pitch ball grid array package.


## DESCRIPTION

The 74ALVCH32501 is a high-performance CMOS product designed for $\mathrm{V}_{\mathrm{CC}}$ operation at 2.5 and 3.3 V with I/O compatibility up to 5 V .

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The 74ALVCH32501 can be used as two 18-bit transceivers or one 36-bit transceiver featuring non-inverting 3-state bus compatible outputs in both send and receive directions. Data flow in each direction is controlled by output enable ( $\mathrm{OE}_{\mathrm{AB}}$ and $\mathrm{OE}_{\mathrm{BA}}$ ), latch enable ( $\mathrm{LE}_{\mathrm{AB}}$ and $\mathrm{LE} \mathrm{E}_{\mathrm{BA}}$ ), and clock inputs $\left(\mathrm{CP}_{\mathrm{AB}}\right.$ and $\left.\mathrm{CP}_{\mathrm{BA}}\right)$.
For A -to- B data flow, the device operates in the transparent mode when $L E_{A B}$ is HIGH . When input $L E_{A B}$ is LOW, the A data is latched if input $\mathrm{CP}_{\mathrm{AB}}$ is held at a HIGH or LOW level. If input $L E_{A B}$ is LOW, the A data is stored in the latch/flip-flop on the LOW-to-HIGH transition of $\mathrm{CP}_{\mathrm{AB}}$. When input $O E_{A B}$ is HIGH , the outputs are active. When input $\mathrm{OE}_{\mathrm{AB}}$ is LOW, the outputs are in the high-impedance state.

Data flow for B-to-A is similar to that of A-to-B, but uses inputs $\overline{\mathrm{OE}}_{\mathrm{BA}}, L E_{B A}$ and $C P_{B A}$. The output enables are complimentary $\left(\mathrm{OE}_{\mathrm{AB}}\right.$ is active HIGH, and $\overline{\mathrm{OE}}_{\mathrm{BA}}$ is active LOW).

To ensure the high-impedance state during power-up or power-down, pin $\overline{\mathrm{OE}}_{\mathrm{BA}}$ should be tied to $\mathrm{V}_{\mathrm{CC}}$ through a pull-up resistor and pin $\mathrm{OE}_{\mathrm{AB}}$ should be tied to GND through a pull-down resistor. The minimum value of the resistor is determined by the current-sinking or current-sourcing capability of the driver.

## QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

| SYMBOL | PARAMETER | CONDITIONS | TYP. | UNIT |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$ | propagation delay $\mathrm{A}_{\mathrm{n}}$ to $\mathrm{B}_{\mathrm{n}} ; \mathrm{B}_{\mathrm{n}}$ to $\mathrm{A}_{\mathrm{n}}$ | $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ | 2.8 | ns |
|  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | 3.0 | ns |
| $\mathrm{C}_{\mathrm{I}}$ | input capacitance |  | 4.0 | pF |
| $\mathrm{C}_{\text {I/O }}$ | input/output capacitance |  | 8.0 | pF |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance per latch | $\mathrm{V}_{\mathrm{l}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} ;$ note 1 <br> outputs enabled <br> outputs disabled | 21 | pF |
|  |  | 3 |  |  |

## Note

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu W\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$f_{i}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.

## 36-bit universal bus transceiver with direction pin;

 5 V tolerant; 3-state
## FUNCTION TABLE

See notes 1 and 2 .

| INPUT |  |  |  | INTERNAL REGISTERS | OUTPUT | OPERATING MODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{nOE}_{\text {AB }}$ | $n L E E_{\text {AB }}$ | $n C P_{\text {AB }}$ | $n A_{n}$ |  | $n B_{n}$ |  |
| L | H | X | X | X | Z | disabled |
| $\begin{aligned} & \bar{L} \\ & L \end{aligned}$ | $\downarrow$ | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | $\begin{aligned} & \hline \mathrm{h} \\ & \mathrm{j} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$ | disabled; latch data |
| L | L | H or L | X | NC | Z | disabled; hold data |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$ | $\mathrm{h}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$ | disabled; clock data |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | transparent |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\downarrow$ | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | $\begin{gathered} \hline \mathrm{h} \\ \mathrm{I} \end{gathered}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \hline \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | latch data and display |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$ | $\mathrm{h}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | clock data and display |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | H or L H or L | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | hold data and display |

## Notes

1. A-to-B data flow is shown; B-to-A flow is similar but uses $n \bar{O} E_{B A}, n L E_{B A}$ and $n C P_{B A}$.
2. $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$h=$ HIGH voltage level on set-up time prior to the enable or clock transition;
L = LOW voltage level;
I = LOW voltage level on set-up time prior to the enable or clock transition;
NC = no change;
X = don't care;
$\uparrow=$ LOW-to-HIGH enable or clock transition;
$\downarrow=$ HIGH-to-LOW enable or clock transition;
Z = high impedance OFF-state.

## 36-bit universal bus transceiver with direction pin;

ORDERING INFORMATION

| TYPE NUMBER | PACKAGE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | TEMPERATURE <br> RANGE | PINS | PACKAGE | MATERIAL | CODE |
|  | -40 to $+85^{\circ} \mathrm{C}$ | 114 | LFBGA114 | plastic | SOT537-1 |

PINNING

| SYMBOL |  |
| :---: | :--- |
| $\mathrm{nA}_{\mathrm{n}}$ | data inputs |
| $\mathrm{nB}_{\mathrm{n}}$ | data outputs |
| GND | ground (0 V) |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage |
| nOE |  |
| $\mathrm{n} \overline{\mathrm{OE}}_{\mathrm{BA}}$ | output enable inputs A to B (active HIGH) |
| $\mathrm{nLE}_{\mathrm{AB}}$ | output enable inputs B to A (active LOW) |
| $\mathrm{nLE}_{\mathrm{BA}}$ | latch enable inputs A to B |
| nCP |  |
| nCP | latch enable inputs B to A |
|  | clock input A to B |



Fig. 1 Pin configuration.

## 36-bit universal bus transceiver with direction pin;

 5 V tolerant; 3-state

Fig. 2 Logic symbol.

## 36-bit universal bus transceiver with direction pin;

74ALVCH32501 5 V tolerant; 3-state

## RECOMMENDED OPERATING CONDITIONS

| SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage | 2.5 V range (for maximum speed performance at 30 pF output load) | 2.3 | 2.7 | V |
|  |  | 3.3 V range (for maximum speed performance at 50 pF output load) | 3.0 | 3.6 | V |
| $\mathrm{V}_{1}$ | DC input voltage |  | 0 | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{0}$ | DC output voltage | output HIGH or LOW state | 0 | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{T}_{\text {amb }}$ | ambient temperature |  | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | input rise and fall time ratios ( $\Delta \mathrm{t} / \Delta \mathrm{V}$ ) | $\mathrm{V}_{C C}=1.2$ to 2.7 V | 0 | 20 | ns/V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V | 0 | 10 | $\mathrm{ns} / \mathrm{V}$ |

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

| SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | DC supply voltage |  | -0.5 | +4.6 | V |
| $\mathrm{V}_{1}$ | DC input voltage | for control pins; note 1 | -0.5 | +4.6 | V |
|  |  | for data input pins; note 1 | -0.5 | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| IK | DC input diode current | $\mathrm{V}_{1}<0$ | - | -50 | mA |
| Iok | DC output clamping diode current | $\mathrm{V}_{\mathrm{O}}<0$; note 1 | - | 50 | mA |
| $\mathrm{V}_{0}$ | DC output voltage | see note 1 | -0.5 | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| $\mathrm{I}_{0}$ | DC output sink current | $\mathrm{V}_{\mathrm{O}}=0$ to $\mathrm{V}_{\text {c }}$ | - | -50 | mA |
| $\mathrm{I}_{\mathrm{CC}} \mathrm{I}_{\mathrm{GND}}$ | DC V ${ }_{\text {cc }}$ or GND current |  | - | $\pm 100$ | mA |
| $\mathrm{T}_{\text {stg }}$ | storage temperature |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{P}_{\mathrm{D}}$ | power dissipation per packages | for temperature range: -40 to $+85^{\circ} \mathrm{C}$; note 2 | - | 1000 | mW |

## Notes

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. Above $55^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\mathrm{D}}$ derates linearly with $1.8 \mathrm{~mW} / \mathrm{K}$.

36-bit universal bus transceiver with direction pin; 5 V tolerant; 3-state

## DC CHARACTERISTICS

Over recommended operating conditions; voltages are referenced to GND (ground = 0 V ).

| SYMBOL | PARAMETER | TEST CONDITIONS |  | Tamb ( ${ }^{\circ} \mathrm{C}$ ) |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OTHER | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | -40 to +85 |  |  |  |
|  |  |  |  | MIN. | TYP. ${ }^{(1)}$ | MAX. |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage |  | 2.3 to 2.7 | 1.7 | 1.2 | - | V |
|  |  |  | 2.7 to 3.6 | 2.0 | 1.5 | - | V |
| VIL | LOW-level input voltage |  | 2.3 to 2.7 | - | 1.2 | 0.7 | V |
|  |  |  | 2.7 to 3.6 | - | 1.5 | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\begin{aligned} \mathrm{V}_{\mathrm{I}} & \mathrm{~V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =-6 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =-24 \mathrm{c} \end{aligned}$ | 2.3 to 3.6 2.3 2.3 2.7 3.0 3.0 | $\begin{aligned} & \mathrm{V}_{C C}-0.2 \\ & \mathrm{~V}_{\mathrm{CC}}-0.3 \\ & \mathrm{~V}_{\mathrm{CC}}-0.6 \\ & \mathrm{~V}_{\mathrm{CC}}-0.5 \\ & \mathrm{~V}_{\mathrm{CC}}-0.6 \\ & \mathrm{~V}_{\mathrm{CC}}-1.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{C C} \\ & V_{C C}-0.08 \\ & V_{C C}-0.26 \\ & V_{C C}-0.14 \\ & V_{C C}-0.09 \\ & V_{C C}-0.28 \end{aligned}$ | $\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{O}}=6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \end{aligned}$ | 2.3 to 3.6 2.3 2.3 2.7 3.0 | $\begin{array}{\|l} - \\ - \\ - \\ - \end{array}$ | $\begin{aligned} & \text { GND } \\ & 0.07 \\ & 0.15 \\ & 0.14 \\ & 0.27 \end{aligned}$ | $\begin{aligned} & 0.20 \\ & 0.40 \\ & 0.70 \\ & 0.40 \\ & 0.55 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
| 1 | input leakage current | $\mathrm{V}_{1}=\mathrm{V}_{\text {cC }}$ or GND | 2.3 to 3.6 | - | $\pm 0.1$ | $\pm 5$ | $\mu \mathrm{A}$ |
| $\mathrm{l}_{\mathrm{OZ}}$ | 3-state output OFF-state current | $\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D ; \text { note } 2 \end{array}$ | 2.3 to 3.6 | - | 0.1 | $\pm 10$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | quiescent supply current | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$ | 2.3 to 3.6 | - | 0.4 | 80 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\mathrm{CC}}$ | additional quiescent supply current given per data I/O pin with bus-hold | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=0$ | 2.7 to 3.6 | - | 150 | 750 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {BHL }}$ | bus-hold LOW sustaining current | $\mathrm{V}_{1}=0.7 \mathrm{~V}$; note 3 | 2.3 | 45 | - | - | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{1}=0.8 \mathrm{~V}$; note 3 | 3.0 | 75 | 150 | - | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {BHH }}$ | bus-hold HIGH sustaining current | $\mathrm{V}_{1}=1.7 \mathrm{~V}$; note 3 | 2.3 | -45 | - | - | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{1}=2.0 \mathrm{~V}$; note 3 | 3.0 | -75 | -175 | - | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {BhLO }}$ | bus-hold LOW overdrive current | note 3 | 3.6 | 500 | - | - | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {BHHO }}$ | bus-hold HIGH overdrive current | note 3 | 3.6 | -500 | - | - | $\mu \mathrm{A}$ |

## Notes

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. For I/O ports, the parameter $\mathrm{l}_{\mathrm{Oz}}$ includes the input leakage current.
3. Valid for data inputs of bus-hold parts.

36-bit universal bus transceiver with direction pin; 5 V tolerant; 3-state

## AC CHARACTERISTICS

GND $=0 \mathrm{~V}$

| SYMBOL | PARAMETER | TEST CONDITIONS |  | $\mathrm{T}_{\text {amb }}=-40$ to $+85{ }^{\circ} \mathrm{C}$ |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | WAVEFORMS | $\mathrm{C}_{\mathrm{L}}$ | MIN. | TYP. | MAX. |  |
| $\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 3}$ to $2.7 \mathrm{~V} ; \mathrm{tr}_{\mathbf{r}}=\mathrm{t}_{\mathbf{f}} \leq \mathbf{2 . 0 ~ n s} ;$ note 1 |  |  |  |  |  |  |  |
| $\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$ | $\begin{aligned} & \text { propagation delay } \\ & n A_{n} \text { to } n B_{n} ; n B_{n} \text { to } n A_{n} \\ & n L E_{B A} \text { to } n A_{n} ; n L E_{A B} \text { to } n B_{n} \\ & n C P_{B A} \text { to } n A_{n} ; n C P_{A B} \text { to } n B_{n} \end{aligned}$ | see Figs 4 and 8 <br> see Figs 5 and 8 <br> see Figs 5 and 8 | 30 pF | $\begin{array}{\|l} \hline 1.0 \\ 1.1 \\ 1.0 \\ \hline \end{array}$ | $\begin{array}{\|l} 2.8 \\ 3.5 \\ 3.3 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 5.1 \\ 6.1 \\ 6.1 \\ \hline \end{array}$ | ns <br> ns ns |
| $\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$ | 3-state output enable time $\mathrm{nOE}_{\text {AB }}$ to $n B_{n}$ | see Figs 6 and 8 |  | 1.0 | 2.5 | 5.8 | ns |
|  | 3-state output enable time $n \overline{O E}_{B A}$ to $n A_{n}$ | see Figs 6 and 8 |  | 1.3 | 2.8 | 6.3 | ns |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | 3-state output disable time $n O E_{A B}$ to $\mathrm{nB}_{n}$ | see Figs 6 and 8 |  | 1.5 | 2.5 | 6.2 | ns |
|  | 3-state output disable time $n \overline{O E}_{B A}$ to $n A_{n}$ | see Figs 6 and 8 |  | 1.3 | 2.5 | 5.3 | ns |
| tw | $n L E E_{A B}$ or $n L E_{B A}$ pulse width HIGH | see Figs 5 and 8 |  | 3.3 | 0.8 | - | ns |
|  | $\mathrm{nCP}_{\mathrm{AB}}$ or $\mathrm{nCP}_{\mathrm{BA}}$ pulse width HIGH or LOW | see Figs 5 and 8 |  | 3.3 | 2.0 | - | ns |
| $\mathrm{t}_{\text {su }}$ | set-up time $n A_{n}$ before $n C P_{A B} \uparrow$ or $n B_{n}$ before $n C P_{B A} \uparrow$ | see Figs 7 and 8 |  | 1.7 | 0.1 | - | ns |
|  | set-up time CP HIGH or LOW $n A_{n}$ before $n L E_{A B} \downarrow$ or $n B_{n}$ before $n L E_{B A} \downarrow$ | see Figs 7 and 8 |  | 1.1 | 0.1 | - | ns |
| $\mathrm{t}_{\mathrm{h}}$ | hold time $n A_{n}$ after $n C P_{A B} \uparrow$ or $n B_{n}$ after $n C P_{B A} \uparrow$ | see Figs 7 and 8 |  | 1.7 | 0.3 | - | ns |
|  | hold time CP HIGH or LOW $n A_{n}$ after $n L E_{A B} \downarrow$ or $n B_{n}$ after $n L E_{B A} \downarrow$ | see Figs 7 and 8 |  | 1.6 | 0.3 | - | ns |
| $\mathrm{f}_{\text {max }}$ | maximum clock frequency | see Figs 5 and 8 |  | 150 | 330 | - | MHz |
| $\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 7} \mathrm{V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 . 5} \mathbf{n s}$; note 2 |  |  |  |  |  |  |  |
| $\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$ | propagation delay $n A_{n}$ to $n B_{n} ; n B_{n}$ to $n A_{n}$ $n L E_{B A}$ to $n A_{n} ; n L E_{A B}$ to $n B_{n}$ $n C P_{B A}$ to $n A_{n} ; n C P_{A B}$ to $n B_{n}$ | see Figs 4 and 8 <br> see Figs 5 and 8 <br> see Figs 5 and 8 | 50 pF | - | $\begin{array}{\|l\|} \hline 3.0 \\ 3.6 \\ 3.4 \end{array}$ | $\begin{array}{\|l} \hline 4.6 \\ 5.3 \\ 5.6 \\ \hline \end{array}$ | ns <br> ns ns |
| $\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$ | 3-state output enable time $\mathrm{nOE}_{\text {AB }}$ to $\mathrm{nB}_{n}$ | see Figs 6 and 8 |  | - | 2.7 | 5.3 | ns |
|  | 3-state output enable time $n \overline{O E}_{B A}$ to $n A_{n}$ | see Figs 6 and 8 |  | - | 3.3 | 6.0 | ns |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | 3-state output disable time $\mathrm{nOE}_{\text {AB }}$ to $\mathrm{nB}_{\mathrm{n}}$ | see Figs 6 and 8 |  | - | 3.6 | 5.7 | ns |
|  | 3-state output disable time $n \overline{O E}_{B A}$ to $n A_{n}$ | see Figs 6 and 8 |  | - | 3.3 | 4.6 | ns |
| tw | pulse width $n L E_{\text {AB }}$ or $n L E_{B A}$ HIGH | see Figs 5 and 8 |  | 3.3 | 0.7 | - | ns |
|  | pulse width $\mathrm{nCP}_{\mathrm{AB}}$ or $\mathrm{nCP}_{\mathrm{BA}}$ HIGH or LOW | see Figs 5 and 8 |  | 3.3 | 1.4 | - | ns |

36-bit universal bus transceiver with direction pin; 5 V tolerant; 3-state

| SYMBOL | PARAMETER | TEST CONDITIONS |  | $\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$ |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | WAVEFORMS | $\mathrm{C}_{\mathrm{L}}$ | MIN. | TYP. | MAX. |  |
| $\mathrm{t}_{\text {su }}$ | set-up time $n A_{n}$ before $n C P_{A B} \uparrow$ or $n B_{n}$ before $n C P_{B A} \uparrow$ | see Figs 7 and 8 | 50 pF | +1.4 | -0.1 | - | ns |
|  | set-up time CP HIGH or LOW $n A_{n}$ before $n L E_{A B} \downarrow$ or $n B_{n}$ before $n L E_{B A} \downarrow$ | see Figs 7 and 8 |  | +1.0 | -0.2 | - | ns |
| $\mathrm{t}_{\mathrm{h}}$ | hold time $n A_{n}$ after $n C P_{A B} \uparrow$ or $\mathrm{nB}_{\mathrm{n}}$ after $\mathrm{nCP}_{\mathrm{BA}} \uparrow$ | see Figs 7 and 8 |  | 1.6 | 0.3 | - | ns |
|  | hold time CP HIGH or LOW $n A_{n}$ after $n L E_{A B} \downarrow$ or $n B_{n}$ after $n L E_{B A} \downarrow$ | see Figs 7 and 8 |  | 1.5 | 0.1 | - | ns |
| $\mathrm{f}_{\text {max }}$ | maximum clock frequency | see Figs 5 and 8 |  | 150 | 333 | - | MHz |
| $\mathrm{V}_{\mathrm{CC}}=\mathbf{3 . 0}$ to 3.6 V ; $\mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 . 5} \mathbf{~ n s} ;$ note 3 |  |  |  |  |  |  |  |
| $\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$ | propagation delay $n A_{n}$ to $n B_{n} ; n B_{n}$ to $n A_{n}$ $n L E_{B A}$ to $n A_{n} ; n L E_{A B}$ to $n B_{n}$ $n C P_{B A}$ to $n A_{n} ; n C P_{A B}$ to $n B_{n}$ | see Figs 4 and 8 <br> see Figs 5 and 8 <br> see Figs 5 and 8 | 50 pF | $\begin{array}{\|l} \hline 1.0 \\ 1.3 \\ 1.4 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 3.0 \\ 3.4 \\ 3.3 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 4.2 \\ 4.8 \\ 4.9 \\ \hline \end{array}$ | ns <br> ns <br> ns |
| $\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$ | 3-state output enable time $\mathrm{nOE}_{\text {AB }}$ to $n B_{n}$ | see Figs 6 and 8 |  | 1.0 | 2.4 | 4.6 | ns |
|  | 3-state output enable time $n \overline{O E}_{B A}$ to $n A_{n}$ | see Figs 6 and 8 |  | 1.1 | 2.5 | 5.0 | ns |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | 3-state output disable time $\mathrm{nOE}_{\mathrm{AB}}$ to $\mathrm{nB}_{\mathrm{n}}$ | see Figs 6 and 8 |  | 1.4 | 2.9 | 5.0 | ns |
|  | 3-state output disable time $n \overline{O E}_{B A}$ to $n A_{n}$ | see Figs 6 and 8 |  | 1.3 | 3.1 | 4.2 | ns |
| tw | pulse width $n L E_{\text {AB }}$ or $n L E_{B A}$ HIGH | see Figs 5 and 8 |  | 3.3 | 0.9 | - | ns |
|  | pulse width $\mathrm{nCP}_{\mathrm{AB}}$ or $\mathrm{nCP}_{\mathrm{BA}}$ HIGH or LOW | see Figs 5 and 8 |  | 3.3 | 1.1 | - | ns |
| $\mathrm{t}_{\text {su }}$ | set-up time $n A_{n}$ before $n C P_{A B} \uparrow$ or $n B_{n}$ before $n C P_{B A} \uparrow$ | see Figs 7 and 8 |  | +1.3 | -0.3 | - | ns |
|  | set-up time CP HIGH or LOW $n A_{n}$ before $n L E_{A B} \downarrow$ or $n B_{n}$ before $n L E_{B A} \downarrow$ | see Figs 7 and 8 |  | 1.0 | 0.3 | - | ns |
| $\mathrm{t}_{\mathrm{h}}$ | hold time $n A_{n}$ after $n C P_{A B} \uparrow$ or $n B_{n}$ after $n C P_{B A} \uparrow$ | see Figs 7 and 8 |  | +1.3 | -0.4 | - | ns |
|  | hold time CP HIGH or LOW $n A_{n}$ after $n L E E_{A B} \downarrow$ or $n B_{n}$ after $n L E E_{B A} \downarrow$ | see Figs 7 and 8 |  | 1.2 | 0.1 | - | ns |
| $\mathrm{f}_{\text {max }}$ | maximum clock frequency | see Figs 5 and 8 |  | 150 | 340 | - | MHz |

## Notes

1. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

## 36-bit universal bus transceiver with direction pin;

 5 V tolerant; 3-state
## AC WAVEFORMS



| $\mathbf{V}_{\mathbf{C c}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{I}}$ |
| :--- | :--- | :--- |
| 2.3 to 2.7 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{CC}}$ |
| 2.7 V | 1.5 V | 2.7 V |
| 3.0 to 3.6 V | 1.5 V | 2.7 V |

$\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage drop that occur with the output load.

Fig. 4 Input $n A_{n}, n B_{n}$ to output $n B_{n}, \mathrm{nA}_{n}$ propagation delay times.

| $\mathbf{V}_{\mathbf{C C}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{I}}$ |
| :--- | :--- | :--- |
| 2.3 to 2.7 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{CC}}$ |
| 2.7 V | 1.5 V | 2.7 V |
| 3.0 to 3.6 V | 1.5 V | 2.7 V |

$\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage drop that occur with the output load.
Fig. 5 Latch enable input ( $n L E_{A B}, n L E_{B A}$ ) and clock input $\left(\mathrm{nCP}_{\mathrm{AB}}, n C P_{B A}\right)$ to output propagation delays and their pulse width.

## 36-bit universal bus transceiver with direction pin;

 5 V tolerant; 3-state
$\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage drop that occur with the output load.
Fig. 6 3-state enable and disable times.


The shaded areas indicate when the input is permitted to change for predictable output performance.

| $\mathbf{V}_{\mathbf{C c}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{I}}$ |
| :--- | :--- | :--- |
| 2.3 to 2.7 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{CC}}$ |
| 2.7 V | 1.5 V | 2.7 V |
| 3.0 to 3.6 V | 1.5 V | 2.7 V |

$\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage drop that occur with the output load.
Fig. 7 Data set-up and hold times for the $n A_{n}$ and $n B_{n}$ inputs to the $n L E_{A B}, n L E_{B A}, n C P_{A B}$ and $n C P_{B A}$ inputs.

## 36-bit universal bus transceiver with direction pin;

 5 V tolerant; 3-state

## 36-bit universal bus transceiver with direction pin;

 5 V tolerant; 3-state
## PACKAGE OUTLINE

LFBGA114: plastic low profile fine-pitch ball grid array package; 114 balls; body $16 \times 5.5 \times 1.05 \mathrm{~mm}$ SOT537-1


DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> $\mathbf{m a x}$. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{b}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{e}$ | $\mathbf{e}_{\mathbf{1}}$ | $\mathbf{e}_{\mathbf{2}}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{y}_{\mathbf{1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.5 | 0.41 | 1.2 | 0.51 | 5.6 | 16.1 | 0.8 | 4.0 | 14.4 | 0.15 | 0.1 | 0.1 | 0.2 |




# 36-bit universal bus transceiver with direction pin; 

 5 V tolerant; 3-state
## 74ALVCH32501

## SOLDERING

## Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

## Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from
215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $230^{\circ} \mathrm{C}$.

## Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a $45^{\circ}$ angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

## Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage ( 24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

36-bit universal bus transceiver with direction pin; 5 V tolerant; 3-state

## 74ALVCH32501

Suitability of surface mount IC packages for wave and reflow soldering methods

| PACKAGE | SOLDERING METHOD |  |
| :--- | :--- | :--- |
|  | WAVE | REFLOW(1) |
| BGA, LFBGA, SQFP, TFBGA | not suitable | suitable |
| HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS | not suitable(2) | suitable |
| PLCC(3), SO, SOJ | suitable | suitable |
| LQFP, QFP, TQFP | nocommended(3)(4) | suitable |
| SSOP, TSSOP, VSO | not recommended(5) | suitable |

## Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a $45^{\circ}$ angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

## DEFINITIONS

| Data sheet status |  |
| :--- | :--- |
| Objective specification | This data sheet contains target or goal specifications for product development. |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |
| Product specification | This data sheet contains final product specifications. |
| Limiting values |  |
| Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or <br> more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation <br> of the device at these or at any other conditions above those given in the Characteristics sections of the specification <br> is not implied. Exposure to limiting values for extended periods may affect device reliability. |  |
| Application information | Where application information is given, it is advisory and does not form part of the specification. |

## LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

## Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 29704 8141, Fax. +61 297048139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160101 1248, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359268 9211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +453329 3333, Fax. +4533293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615 800, Fax. +35896158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300

## Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, J. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23-20052 MONZA (MI),
Tel. +39 039203 6838, Fax +39 0392036800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +8133740 5130, Fax. +81 337405057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800234 7381, Fax +9-5 8009430087
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: AI.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 225710 000, Fax. +48 225710001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11471 5401, Fax. +27 114715398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2886, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 2881260 Umraniye, ISTANBUL, Tel. +90 216522 1500, Fax. +90 2165221813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208730 5000, Fax. +44 2087548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +18009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 113341 299, Fax.+381 113342553

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.


