DATA SHEET

74LV109
 Dual JK flip-flop with set and reset; positive-edge trigger

Supersedes data of 1997 Jun 06 IC24 Data Handbook

FEATURES

- Optimized for low voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$
- Typical $\mathrm{V}_{\mathrm{OLP}}$ (output ground bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, $T_{\text {amb }}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\mathrm{OHV}}$ (output V_{OH} undershoot) $>2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, $T_{\text {amb }}=25^{\circ} \mathrm{C}$
- Output capability: standard
- I ICC category: flip-flops

DESCRIPTION

The 74LV109 is a low-voltage Si-gate CMOS device that is pin and function compatible with $74 \mathrm{HC} / \mathrm{HCT} 109$.
The 74LV109 is a dual positive-edge triggered JK-type flip-flop featuring individual J, K inputs, clock (CP) inputs, set (S_{D}) and reset $\left(\bar{R}_{D}\right)$ inputs; also complementary Q and \bar{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input.

The J and K inputs control the state changes of the flip-flops as described in the mode select function table. The J and K inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

The JK design allows operation as a D-type flip-flop by tying the J and K inputs together.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
tphL $^{\text {/PLLH }}$	Propagation delay $n C P$ to $n Q, n \bar{Q}$ $n \bar{S}_{D}$ to $n Q, n \bar{Q}$ $n \mathrm{R}_{\mathrm{D}}$ to $\mathrm{nQ}, \mathrm{n} \overline{\mathrm{Q}}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \\ & 12 \end{aligned}$	ns
$\mathrm{f}_{\text {max }}$	Maximum clock frequency		77	MHz
C_{1}	Input capacitance		3.5	pF
$\mathrm{C}_{\text {PD }}$	Power dissipation capacitance per flip-flop	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}{ }^{1}$	20	pF

NOTE:

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$)
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in $\mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{f}_{\mathrm{O}}=$ output frequency in MHz ; $\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. $\#$
16-Pin Plastic DIL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 109 N	74 LV 109 N	SOT38-4
16-Pin Plastic SO	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 109 D	74 LV 109 D	SOT109-1
16-Pin Plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 109 DB	74 LV 109 DB	SOT338-1
16-Pin Plastic TSSOP Type I	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 109 PW	$74 \mathrm{LV} 109 P W$ DH	SOT403-1

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1,15	$1 \mathrm{R}_{\mathrm{D}}, 2 \mathrm{R}_{\mathrm{D}}$	Asynchronous reset input (active LOW)
2, 14, 3, 13	$\begin{aligned} & \hline 1 \mathrm{~J}, 2 \mathrm{~J}, \\ & 1 \mathrm{~K}, 2 \mathrm{~K} \end{aligned}$	Synchronous inputs; flip-flops 1 and 2
4, 12	1CP, 2CP	Clock input (LOW-to-HIGH, edge-triggered)
5, 11	$1 \bar{S}_{D}, 2 \bar{S}_{D}$	Asynchronous set inputs (active LOW)
6, 10	1Q, 2Q	True flip-flop outputs
7, 9	1言, 2, ${ }^{\text {a }}$	Complement flip-flop outputs
8	GND	Ground (0 V)
16	$\mathrm{V}_{C C}$	Positive supply voltage

LOGIC SYMBOL (IEEE/IEC)

(a)

(b)

LOGIC SYMBOL

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODES	INPUTS					OUTPUTS	
	$n \bar{S}_{\text {D }}$	$\mathrm{nR} \mathrm{m}_{\text {D }}$	nCP	nJ	nK	nQ	n \bar{Q}
Asynchronous set	L	H	X	X	X	H	L
Asynchronous reset	H	L	X	X	X	L	H
Undetermined	L	L	X	X	X	H	H
Toggle	H	H	\uparrow	h	1	\bar{q}	q
Load "0" (reset)	H	H	\uparrow	1	1	L	H
Load "1" (set)	H	H	\uparrow	h	h	H	L
Hold "no change"	H	H	\uparrow	I	h	q	\bar{q}

NOTES:
H = HIGH voltage level
h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
$\mathrm{L}=$ LOW voltage level
I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
$q=$ lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition.
X = don't care
$\uparrow=$ LOW-to-HIGH CP transition

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V_{CC}	DC supply voltage	See Note 1	1.0	3.3	3.6	V
V_{1}	Input voltage		0	-	$\mathrm{V}_{\text {CC }}$	V
V_{O}	Output voltage		0	-	$\mathrm{V}_{\text {cc }}$	V
Tamb	Operating ambient temperature range in free air	See DC and AC characteristics	$\begin{aligned} & \hline-40 \\ & -40 \end{aligned}$		$\begin{array}{r} +85 \\ +125 \\ \hline \end{array}$	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input rise and fall times except for Schmitt-trigger inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V} \text { to } 2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.0 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	$\begin{aligned} & 500 \\ & 200 \\ & 100 \end{aligned}$	ns/V

NOTE:

1. The LV is guaranteed to function down to $\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$ (input levels GND or V_{CC}); DC characteristics are guaranteed from $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$.

ABSOLUTE MAXIMUM RATINGS¹,2

In accordance with the Absolute Maximum Rating System (IEC 134).
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +4.6	V
$\pm \mathrm{I}_{\text {K }}$	DC input diode current	$\mathrm{V}_{1}<-0.5$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	20	mA
$\pm \mathrm{l}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<-0.5$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	50	mA
± 10	DC output source or sink current - standard outputs	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	25	mA
$\begin{aligned} & \pm \mathrm{I}_{\mathrm{GND}}, \\ & \pm \mathrm{I}_{\mathrm{CC}} \end{aligned}$	DC V_{Cc} or GND current for types with - standard outputs		50	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {TOT }}$	Power dissipation per package - plastic DIL - plastic mini-pack (SO) - plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ derate linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $+70^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $+60^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$	$\begin{aligned} & 750 \\ & 500 \\ & 400 \end{aligned}$	mW

NOTE:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
			MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
V_{IH}	HIGH level Input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	0.9			0.9		V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.4			1.4		
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	2.0			2.0		
$V_{\text {IL }}$	LOW level Input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$			0.3		0.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$			0.6		0.6	
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V			0.8		0.8	
V_{OH}	HIGH level output voltage; all outputs	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ;-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		1.2				V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	1.8	2.0		1.8		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	2.5	2.7		2.5		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	2.8	3.0		2.8		
V_{OH}	HIGH level output voltage; STANDARD outputs	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ;-\mathrm{l}_{\mathrm{O}}=6 \mathrm{~mA}$	2.40	2.82		2.20		V
V_{OL}	LOW level output voltage; all outputs	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0				V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0	0.2		0.2	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL; }} \mathrm{I} \mathrm{I}=100 \mu \mathrm{~A}$		0	0.2		0.2	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL; }} \mathrm{I} \mathrm{I}=100 \mu \mathrm{~A}$		0	0.2		0.2	
VoL	LOW level output voltage; STANDARD outputs	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{lO}=6 \mathrm{~mA}$		0.25	0.40		0.50	V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			1.0		1.0	$\mu \mathrm{A}$
Icc	Quiescent supply current; flip-flops	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$			20.0		80	$\mu \mathrm{A}$
$\Delta^{\text {l }}$ C	Additional quiescent supply current per input	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 $\mathrm{V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$			500		850	$\mu \mathrm{A}$

NOTE:

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$

SYMBOL	PARAMETER	WAVEFORM	CONDITION	LIMITS					UNIT
				-40 to $+85{ }^{\circ} \mathrm{C}$			-40 to $+125{ }^{\circ} \mathrm{C}$		
			$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
tPHL/tPLH	Propagation delay $n C P$ to $n Q, n \bar{Q}$	Figure 1	1.2		90				ns
			2.0		31	58		70	
			2.7		23	43		51	
			3.0 to 3.6		18^{2}	34		41	
$t_{\text {PLH }}$	Propagation delay $n \bar{S}_{D}$ to $n Q$	Figure 2	1.2		55				ns
			2.0		19	36		44	
			2.7		14	26		33	
			3.0 to 3.6		10^{2}	21		26	

AC CHARACTERISTICS (Continued)

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$

SYMBOL	PARAMETER	WAVEFORM	CONDITION	LIMITS					UNIT
				-40 to $+85^{\circ} \mathrm{C}$			-40 to +125 ${ }^{\circ} \mathrm{C}$		
			$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
$t_{\text {PHL }}$	Propagation delay $n \bar{S}_{D}$ to $n \bar{Q}$	Figure 2	1.2		75				ns
			2.0		26	46		60	
			2.7		19	36		44	
			3.0 to 3.6		17^{2}	29		35	
$t_{\text {PHL }}$	Propagation delay $n \bar{R}_{D}$ to $n Q$	Figure 2	1.2		75				ns
			2.0		26	46		60	
			2.7		19	36		44	
			3.0 to 3.6		15^{2}	29		35	
$t_{\text {PLH }}$	Propagation delay $n \bar{D}$ to $n \bar{Q}$	Figure 2	1.2		70				ns
			2.0		24	44		54	
			2.7		18	33		40	
			3.0 to 3.6		13^{2}	26		32	
tw	Clock pulse width HIGH or LOW	Figure 1	2.0	34	12		41		ns
			2.7	25	9		30		
			3.0 to 3.6	20	7^{2}		24		
tw	Set or reset pulse width HIGH or LOW	Figure 2	2.0	34	9		41		ns
			2.7	25	6		30		
			3.0 to 3.6	20	5^{2}		24		
$t_{\text {rem }}$	Removal time $n \bar{S}_{D}, n R_{D}$ to $n C P$	Figure 2	1.2		35				ns
			2.0	24	12		29		
			2.7	18	9		21		
			3.0 to 3.6	14	7^{2}		17		
$\mathrm{t}_{\text {su }}$	Set-up time nJ, nK to CP	Figure 1	1.2		30				ns
			2.0	22	10		26		
			2.7	16	8		19		
			3.0 to 3.6	13	6^{2}		15		
$t_{\text {h }}$	Hold time $n J, n \bar{K}$ to $n C P$	Figure 1	1.2		-5				ns
			2.0	5	-2		5		
			2.7	5	-1		5		
			3.0 to 3.6	5	$0{ }^{2}$		5		
$\mathrm{f}_{\text {max }}$	Maximum clock pulse frequency	Figure 1	2.0	14	40		12		MHz
			2.7	19	58		16		
			3.0 to 3.6	24	70^{2}		20		

NOTES:

1. Unless otherwise stated, all typical values are measured at $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
2. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{M}}=0.5 \times \mathrm{V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$;
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

Figure 1. Clock (nCP) to output ($\mathrm{n} Q, \mathrm{n} \overline{\mathrm{Q}}$) propagation delays, the clock pulse width, the nJ and $n \bar{K}$ to $n C P$ set-up, the nCP to nJ, nK hold times and the maximum clock pulse frequency.

Figure 2. Set $\left(\mathrm{n} \bar{S}_{\mathrm{D}}\right)$ and reset $\left(\mathrm{n} \bar{R}_{\mathrm{D}}\right)$ input to output ($\mathrm{n} Q, \mathrm{n} \overline{\mathrm{Q}}$) propagation delays, the set and reset pulse widths and the $n R_{D}$, $\mathrm{n} \overline{\mathrm{S}}_{\mathrm{D}}$ to nCP removal time.

TEST CIRCUIT

Test Circuit for switching times

DEFINITIONS

$R_{L}=$ Load resistor
$C_{L}=$ Load capacitance includes jig and probe capacitance
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

TEST
$\mathrm{t}_{\mathrm{PLH}} / \mathrm{tPHL}$

V_{CC}	$\mathrm{V}_{\mathbf{l}}$
$<2.7 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$
$2.7-3.6 \mathrm{~V}$	2.7 V

Figure 3. Load circuitry for switching times.

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{A}$	A_{1} min.	A_{2} max.	b	b_{1}	b_{2}	c	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\begin{gathered} \mathbf{z}^{(1)} \\ \max \end{gathered}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT38-4				- ¢	$\begin{aligned} & 92-11-17 \\ & 95-01-14 \end{aligned}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\left.\begin{array}{\|c\|} \hline 0.0098 \\ 0.0039 \end{array} \right\rvert\,$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0098 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.24 \\ & 0.23 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC		\square	$\begin{aligned} & 91-08-13 \\ & 95-01-23 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	6.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	1.00	8°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT338-1		MO-150AC		-	$\begin{aligned} & 94-01-14 \\ & 95-02-04 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	$\mathbf{1 . 1 0}$	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0	0.65	6.6	1.0	0.75	0.4	0	0.2	0.13	0.1

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT403-1		MO-153		- ($\begin{aligned} & -94-07-12 \\ & 95-04-04 \end{aligned}$

DEFINITIONS

Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381
© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.
print code Date of release: 05-96

Document order number:
9397-750-04417

Let's make things better.

PHILIPS

