INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Jun 06 IC24 Data Handbook

1998 Apr 20

74LV109

FEATURES

- Optimized for low voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Output capability: standard
- I_{CC} category: flip-flops

DESCRIPTION

The 74LV109 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC/HCT109.

The 74LV109 is a dual positive-edge triggered $J\overline{K}$ -type flip-flop featuring individual J, \overline{K} inputs, clock (CP) inputs, set (\overline{S}_D) and reset (\overline{R}_D) inputs; also complementary Q and \overline{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input.

The J and \overline{K} inputs control the state changes of the flip-flops as described in the mode select function table. The J and \overline{K} inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

The J \overline{K} design allows operation as a D-type flip-flop by tying the J and K inputs together.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	$\begin{array}{l} Propagation \ delay \\ nCP \ to \ nQ, \ n\overline{Q} \\ n\overline{S}_D \ to \ nQ, \ n\overline{Q} \\ n\overline{R}_D \ to \ nQ, \ n\overline{Q} \end{array}$	C _L = 15 pF; V _{CC} = 3.3 V	14 12 12	ns
f _{max}	Maximum clock frequency	7	77	MHz
Cl	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per flip-flop	$V_{I} = GND$ to V_{CC}^{1}	20	pF

NOTE:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW)

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$ $f_i = \text{input frequency in MHz; } C_L = \text{output load capacitance in pF;}$

 $f_o = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V; } \\ \Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of the outputs.}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic DIL	–40°C to +125°C	74LV109 N	74LV109 N	SOT38-4
16-Pin Plastic SO	–40°C to +125°C	74LV109 D	74LV109 D	SOT109-1
16-Pin Plastic SSOP Type II	–40°C to +125°C	74LV109 DB	74LV109 DB	SOT338-1
16-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV109 PW	74LV109PW DH	SOT403-1

PIN CONFIGURATION

1R _D <u>1</u> 1J <u>2</u> 1K <u>3</u> 1CP <u>4</u> 1S _D <u>5</u> 1Q <u>6</u> 1 <u>Q</u> 7		16 V _{CC} 15 2R _D 14 2J 13 2K 12 2CP 11 2S _D 10 2Q
1Q 7		10 2Q
GND 8		9 2 0
	S	SV00517

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1, 15	$1\overline{R}_{D}, 2\overline{R}_{D}$	Asynchronous reset input (active LOW)
2, 14, 3, 13	1J, 2 <u>J,</u> 1K, 2K	Synchronous inputs; flip-flops 1 and 2
4, 12	1CP, 2CP	Clock input (LOW-to-HIGH, edge-triggered)
5, 11	1 S_{D,} 2S_D	Asynchronous set inputs (active LOW)
6, 10	1Q, 2Q	True flip-flop outputs
7, 9	1 <u>Q</u> , 2 <u>Q</u>	Complement flip-flop outputs
8	GND	Ground (0 V)
16	V _{CC}	Positive supply voltage

74LV109

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL

LOGIC DIAGRAM

1998 Apr 20

74LV109

FUNCTION TABLE

OPERATING MODES				OUTPUTS			
OPERATING MODES	n <mark>S</mark> D	nR _D	nCP	nJ	nK	nQ	nQ
Asynchronous set	L	Н	Х	Х	Х	Н	L
Asynchronous reset	Н	L	Х	Х	Х	L	Н
Undetermined	L	L	Х	Х	Х	Н	Н
Toggle	Н	Н	\uparrow	h	I	q	q
Load "0" (reset)	Н	н	\uparrow	I	I	L	Н
Load "1" (set)	Н	н	\uparrow	h	h	Н	L
Hold "no change"	Н	Н	\uparrow	I	h	q	q

NOTES:

H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition

q = lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition.

X = don't care

 \uparrow = LOW-to-HIGH CP transition

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note 1	1.0	3.3	3.6	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times except for Schmitt-trigger inputs	$V_{CC} = 1.0V \text{ to } 2.0V$ $V_{CC} = 2.0V \text{ to } 2.7V$ $V_{CC} = 2.7V \text{ to } 3.6V$	- - -	- - -	500 200 100	ns/V

NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 3.6V.

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134).

Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		–0.5 to +4.6	V
$\pm I_{IK}$	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5 V$	20	mA
±I _{OK}	DC output diode current	$V_{\rm O}$ < -0.5 or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5V	50	mA
$\pm I_{O}$	DC output source or sink current – standard outputs	$-0.5V < V_{O} < V_{CC} + 0.5V$	25	mA
$^{\pm I_{GND},}_{\pm I_{CC}}$	DC V _{CC} or GND current for types with – standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTE:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LV109

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-4	0°C to +8	5°C	-40°C to	o +125°C	
			MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2 V	0.9			0.9		
VIH	HIGH level Input voltage	V _{CC} = 2.0 V	1.4			1.4		V
	voltago	V _{CC} = 2.7 to 3.6 V	2.0			2.0		1
		V _{CC} = 1.2 V			0.3		0.3	
VIL	LOW level Input voltage	V _{CC} = 2.0 V			0.6		0.6	V
	voltago	V _{CC} = 2.7 to 3.6 V			0.8		0.8	1
		V_{CC} = 1.2 V; V_I = V_{IH} or V_{IL} ; $-I_O$ = 100 μ A		1.2				
N	HIGH level output	$V_{CC} = 2.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL;} - \text{I}_{O} = 100 \mu \text{A}$	1.8	2.0		1.8		
V _{OH}	voltage; all outputs	V_{CC} = 2.7 V; V_I = V_{IH} or V_{IL} ; $-I_O$ = 100 μ A	2.5	2.7		2.5		7 ×
		$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL;} - \text{I}_{O} = 100 \mu \text{A}$	2.8	3.0		2.8		1
V _{OH}	HIGH level output voltage; STANDARD outputs	$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL;} - \text{I}_{O} = 6\text{mA}$	2.40	2.82		2.20		V
		V_{CC} = 1.2 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0				
V	LOW level output	V_{CC} = 2.0 V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 100 μ A		0	0.2		0.2	
V _{OL}	voltage; all outputs	V_{CC} = 2.7 V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 100 μ A		0	0.2		0.2	l v
		V_{CC} = 3.0 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	
V _{OL}	LOW level output voltage; STANDARD outputs	$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}; \text{ I}_{O} = 6\text{mA}$		0.25	0.40		0.50	V
I	Input leakage current	V_{CC} = 3.6 V; V_{I} = V_{CC} or GND			1.0		1.0	μA
Icc	Quiescent supply current; flip-flops	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or } \text{GND}; I_O = 0$			20.0		80	μΑ
ΔI_{CC}	Additional quiescent supply current per input	V_{CC} = 2.7 V to 3.6 V; V_{I} = V_{CC} – 0.6 V			500		850	μA

NOTE:

1. All typical values are measured at T_{amb} = 25°C.

AC CHARACTERISTICS

 $GND=0V;\,t_r=t_f\leq 2.5ns;\,C_L=50pF;\,R_L=1K\Omega$

			CONDITION			LIMITS			
SYMBOL	PARAMETER	WAVEFORM	CONDITION	_	40 to +85 °	С	-40 to -	+125 °C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			1.2		90				
t/t	Propagation delay nCP to nQ , $n\overline{Q}$	Figure 1	2.0		31	58		70	ns
t _{PHL} /t _{PLH}	nCP to nQ, nQ	Figure i	2.7		23	43		51	115
			3.0 to 3.6		18 ²	34		41	
			1.2		55				
t	Propagation delay	Figure 2	2.0		19	36		44	ns
t _{PLH}	Propagation delay nS _D to nQ	Figule 2	2.7		14	26		33	115
			3.0 to 3.6		10 ²	21		26	

AC CHARACTERISTICS (Continued)

 $GND = 0V; \ t_r = t_f \leq 2.5 ns; \ C_L = 50 pF; \ R_L = 1 K \Omega$

			CONDITION			LIMITS	-			
SYMBOL	PARAMETER	WAVEFORM	CONDITION		40 to +85 °	°C	-40 to	+125 °C	UNIT	
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	x	
			1.2		75					
*	Propagation delay	Figure 2	2.0		26	46		60	ns	
t _{PHL}	$n\overline{S}_{D}$ to $n\overline{Q}$		2.7		19	36		44	115	
			3.0 to 3.6		17 ²	29		35		
			1.2		75					
	Propagation delay	Figure 2	2.0		26	46		60		
tPHL	nR _D to nQ		2.7		19	36		44	ns	
			3.0 to 3.6		15 ²	29		35		
			1.2		70					
	Propagation delay		2.0		24	44		54	-	
t _{PLH}	$n\overline{R}_{D}$ to $n\overline{Q}$	Figure 2	2.7		18	33		40 ns		
			3.0 to 3.6		13 ²	26		32	1	
			2.0	34	12		41			
tw	Clock pulse width HIGH or LOW	Figure 1	2.7	25	9		30		ns	
			3.0 to 3.6	20	72		24			
	Set or reset pulse width HIGH or LOW		2.0	34	9		41			
t _W		Figure 2	2.7	25	6		30		ns	
			3.0 to 3.6	20	5 ²		24			
			1.2		35					
	Removal time		2.0	24	12		29			
t _{rem}	$n\overline{S}_{D,} n\overline{R}_{D}$ to nCP	Figure 2	2.7	18	9		21		ns	
			3.0 to 3.6	14	72		17			
			1.2		30					
	Set-up time		2.0	22	10		26			
t _{su}	nJ, nK to CP	Figure 1	2.7	16	8		19		ns	
			3.0 to 3.6	13	6 ²		15			
			1.2		-5					
	Hold time		2.0	5	-2		5		ns	
t _h	nJ, nK to nCP	Figure 1	2.7	5	-1	1	5			
			3.0 to 3.6	5	0 ²	İ 👘	5			
			2.0	14	40	1	12			
f _{max}	Maximum clock pulse frequency	Figure 1	2.7	19	58		16		MHz	
	pulse nequency		3.0 to 3.6	24	70 ²		20			

NOTES:

1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$ 2. Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

74LV109

 $R_L = 1k$

SV00901

AC WAVEFORMS

 V_M = 1.5 V at $V_{CC} \geq$ 2.7 V; V_{M} = 0.5 \times V_{CC} at V_{CC} < 2.7 V; VOL and VOH are the typical output voltage drop that occur with the output load.

Figure 1. Clock (nCP) to output (nQ, $n\overline{Q}$) propagation delays, the clock pulse width, the nJ and $n\overline{K}$ to nCP set-up, the nCP to nJ, nK hold times and the maximum clock pulse frequency.

Figure 2. Set $(n\overline{S}_D)$ and reset $(n\overline{R}_D)$ input to output $(nQ, n\overline{Q})$ propagation delays, the set and reset pulse widths and the $n\overline{R}_D$, $n\overline{S}_D$ to nCP removal time.

TEST CIRCUIT VCC ۷O ٧ı PULSE GENERATOR D.U.T. 50pF RT Cı

Test Circuit for switching times

DEFINITIONS

R_L = Load resistor

CL = Load capacitance includes jig and probe capacitance

$R_T =$	Iermination	resistance	should I	be equal	to Z _{OUT}	of pulse	generators.
---------	-------------	------------	----------	----------	---------------------	----------	-------------

TEST	V _{CC}	VI
t _{PLH} /t _{PHL}	< 2.7V	V _{CC}
	2.7–3.6V	2.7V

Figure 3. Load circuitry for switching times.

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT38-4						-92-11-17 95-01-14

74LV109

DEFINITIONS					
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-04417

Let's make things better.

PHILIPS