
INTEGRATED CIRCUITS

Product specification Supersedes data of 1996 Aug 23 IC24 Data Handbook

1998 May 20

74LVC163

FEATURES

- Wide supply voltage range of 1.2 V to 3.6 V
- In accordance with JEDEC standard no. 8–1A
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- Direct interface with TTL levels
- Synchronous reset
- Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- Positive edge-triggered clock

DESCRIPTION

The 74LVC163 is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

The 74LVC163 is a synchronous presettable binary counter which features an internal look-head carry and can be used for high-speed counting. Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock (CP). The outputs (Q_0 to Q_3) of the counters may be preset to a HIGH or LOW level. A LOW level at the parallel enable input (PE) disables the counting action and causes the data at the data inputs (D₀ to D₃) to be loaded into the counter on the positive-going edge of the clock (provided that the set-up and hold time requirements for PE are met). Preset takes place regardless of the levels at count enable inputs (CEP and CET). A low level at the master reset input (MR) sets all four outputs of the flip-flops (Q₀ to Q₃) to LOW level after the next positive-going transition on the clock (CP) input (provided that the set-up and hold time requirements for PE are met).

This action occurs regardless of the levels at CP, PE, CET and CEP inputs This synchronous reset feature enables the designer to modify the maximum count with only one external NAND gate.

The look-ahead carry simplifies serial cascading of the counters. Both count enable inputs (CEP and CET) must be HIGH to count. The CET input is fed forward to enable the terminal count output (TC). The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to a HIGH level output of Q_0 . This pulse can be used to enable the next cascaded stage. The maximum clock frequency for the cascaded counters is determined by the CP to TC propagation delay and CEP to CP set-up time, according to the following formula:

1 fmax = tp(max) (CP to TC) + t_{SU} (CEP to CP)

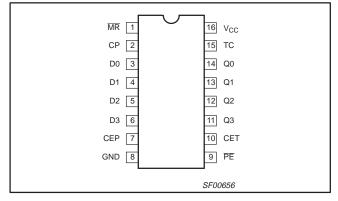
QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $T_{R} = T_{F} \le 2.5$ ns

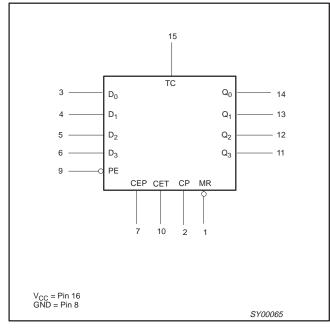
SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay CP to Q _n CP to TC CET to TC	C _L = 50 pF V _{CC} = 3.3V	4.9 5.7 4.5	ns
f _{MAX}	maximum clock frequency		200	MHz
C _I input capacitance			5.0	pF
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	39	pF

NOTES:

 C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; C_L = output load capacity in pF; fo = output frequency in MHz; V_{CC} = supply voltage in V; Σ (C_L x V_{CC}² x f₀) = sum of the outputs 2. The condition is V₁ = GND to V_{CC}

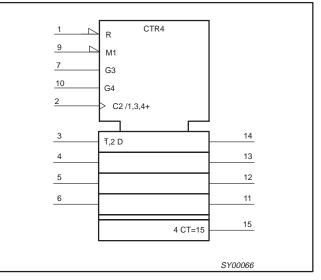

ORDERING INFORMATION

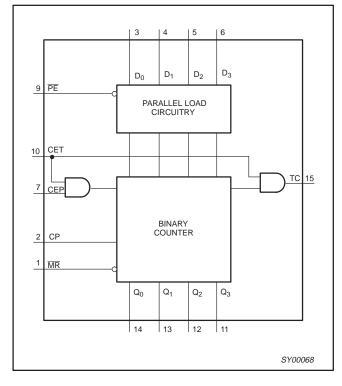
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
16-Pin Plastic SO	-40°C to +85°C	74LVC163 D	74LVC163 D	SOT109-1
16-Pin Plastic SSOP Type II	-40°C to +85°C	74LVC163 DB	74LVC163 DB	SOT338-1
16-Pin Plastic TSSOP Type I	-40°C to +85°C	74LVC163 PW	74LVC163PW DH	SOT403-1


Product specification

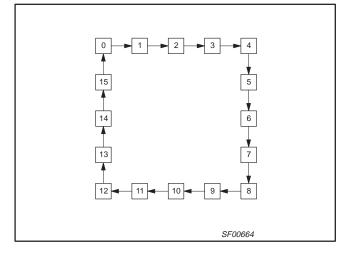
74LVC163

PIN CONFIGURATION


LOGIC SYMBOL


PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	MR	asynchronous master reset (active LOW)
2	СР	clock input (LOW-to-HIGH, edge-triggered)
3,4,5,6	D ₀ to D ₃	data inputs
7	CEP	count enable inputs
8	GND	ground (0V)
9	PE	parallel enable input (active LOW)
10	CET	count enable carry input
14,13,12,11	Q ₀ to Q ₃	flip-flop outputs
15	TC	terminal count output
16	V _{CC}	positive supply voltage


LOGIC SYMBOL (IEEE/IEC)

FUNCTIONAL DIAGRAM

STATE DIAGRAM

FUNCTION TABLE

OPERATING		INPUTS						OUTPUTS	
MODES	MR	СР	CEP	CET	PE	Dn	Qn	тс	
Reset (clear)	I	Ŷ	Х	Х	Х	Х	L	L	
Parallel load	h h	↑ ↑	X X	X X		l h	L H	L *	
Count	h	Ŷ	h	h	h	Х	count	*	
Hold (do nothing)	h h	X X	I X	X I	h h	X X	q _n q _n	* L	

NOTES:

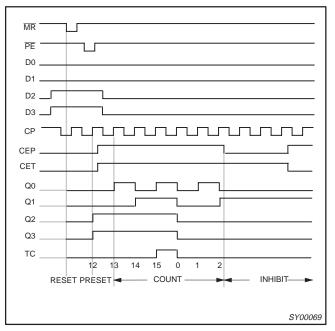
Т

The TC output is High when CET is High and the counter is at Terminal Count (HHHH) =

High voltage level =

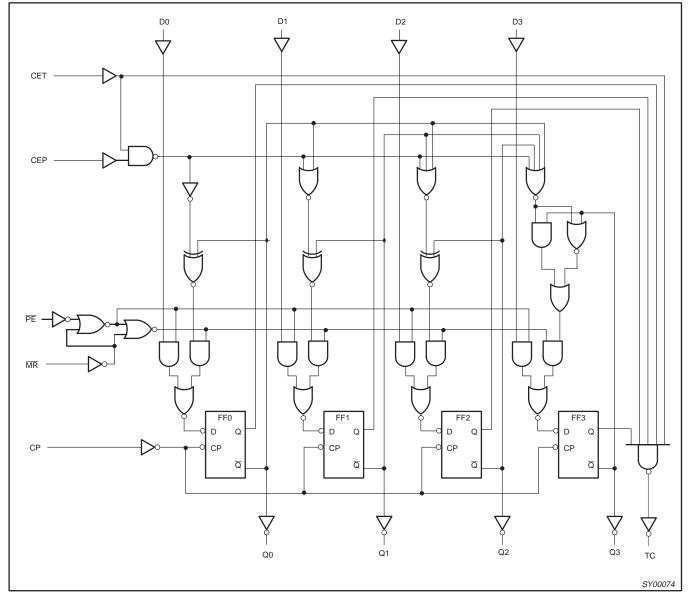
Н High voltage level one setup time prior to the Low-to-High h = clock transition

Low voltage level L =


Low voltage level one setup time prior to the Low-to-High = clock transition

Lower case letters indicate the state of the referenced q = output one setup time prior to the Low-to-High clock transition

X ↑ = Don't care


Low-to-High clock transition =

TYPICAL TIMING SEQUENCE

Typical timing sequence: reset outputs to zero; preset to binary twelve; count to thirteen, fourteen, fifteen, zero, one, and two; inhibit

LOGIC DIAGRAM

74LVC163

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT		
STWIDOL	FARAMETER	CONDITIONS	MIN	MAX	UNIT	
V _{cc}	DC supply voltage (for max. speed performance)		2.7	3.6	V	
VCC	DC supply voltage (for low-voltage applications)		1.2	3.6	v	
VI	DC input voltage range		0	5.5	V	
Vo	DC output voltage range		0	V _{CC}	V	
T _{amb}	Operating free-air temperature range		-40	+85	°C	
t _r , t _f	Input rise and fall times	$V_{CC} = 1.2 \text{ to } 2.7 \text{V}$ $V_{CC} = 2.7 \text{ to } 3.6 \text{V}$	0	20 10	ns/V	

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134)

Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +6.5	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage	Note 2	-0.5 to +5.5	V
I _{OK}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	± 50	mA
V _O	DC output voltage	Note 2	–0.5 to V _{CC} +0.5	V
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	± 50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	500 500	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LVC163

Product specification

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

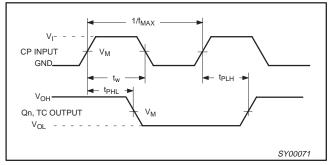
			L	UNIT			
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -				
			MIN	TYP ¹	МАХ		
M		V _{CC} = 1.2V	V _{CC}			v	
V _{IH}	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0				
M		V _{CC} = 1.2V			GND	v	
VIL	LOW level Input voltage	V _{CC} = 2.7 to 3.6V	2.7 to 3.6V				
	HIGH level output voltage	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.5			- v	
N/		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -100 \mu A$	V _{CC} -0.2	V _{CC}			
V _{OH}		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = -12mA$	V _{CC} -0.6				
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = -24mA$	V _{CC} -1.0			1	
		$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 12\text{mA}$			0.40		
V _{OL}	LOW level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$	′ _{IL} ; I _O = 100μA		0.20	V	
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 24 \text{mA}$			0.55	1	
łı	Input leakage current	V _{CC} = 3.6V; V _I = 5.5V or GND		±0.1	±5	μΑ	
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or GND}; I_O = 0$		0.1	10	μΑ	
ΔI_{CC}	Additional quiescent supply current per input pin	V_{CC} = 2.7V to 3.6V; V_{I} = V_{CC} –0.6V; I_{O} = 0		5	500	μA	

NOTES:

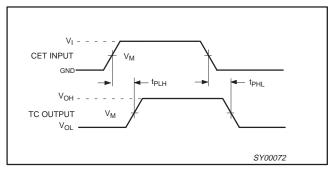
1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC CHARACTERISTICS

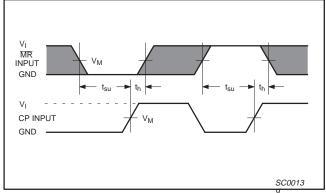
GND = 0 V; t_r = t_f $\leq~$ 2.5 ns; CL = 50 pF; RL = 500 $\Omega;$ T_{amb} = $-40^\circ C$ to +85 $^\circ C$

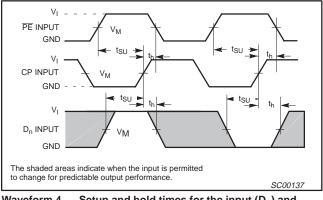

			LIMITS						
SYMBOL	PARAMETER	WAVEFORM	Vcc	; = 3.3V ±0).3V	V _{CC} =	= 2.7V	V _{CC} = 1.2V	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	TYP	1
t _{PHL} t _{PLH}	Propagation delay CP to Qn	1	_	4.9	8.0	-	9.0	24	ns
t _{PHL} t _{PLH}	Propagation delay CP to TC	1	-	5.7	9.5	-	11	28	ns
t _{PHL} t _{PLH}	Propagation delay CET to TC	2	-	4.5	7.8	-	8.8	19	ns
t _W	Clock pulse width HIGH or LOW	1	4.0	1.2	-	5.0	-	-	ns
t _{su}	Set-up time D _n to CP	3, 4	2.5	1.0	-	3.0	-	-	ns
t _{su}	Set-up time MR, PE to CP	4	3.0	1.2	-	3.5	-	-	ns
t _{su}	Set-up time CEP, CET to CP	5	5.0	2.1	-	5.5	-	-	ns
t _h	Hold time D _n , PE, CEP, CET, MR to CP	3, 4, and 5	0	-1.7	-	0	-	-	ns
f _{max}	Maximum clock pulse frequency	1	125	200	-	110	-	_	MHz

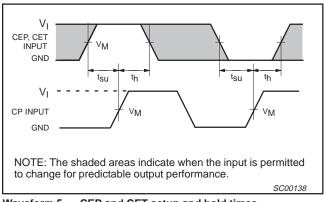
NOTE:


1. These typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

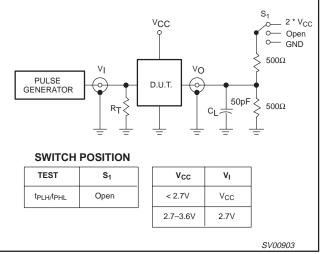
AC WAVEFORMS


 $\begin{array}{l} V_M = 1.5 \ V \ at \ V_{CC} \geq 2.7 \ V \\ V_M = 0.5 \bullet \ V_{CC} \ at \ V_{CC} < 2.7 \ V \\ V_{OL} \ and \ V_{OH} \ are \ the \ typical \ output \ voltage \ drop \ that \ occur \ with \ the \ output \ load. \end{array}$


Waveform 1. Clock (CP) to outputs (Q_n, TC) propagation delays, the clock pulse width and the maximum clock frequency.

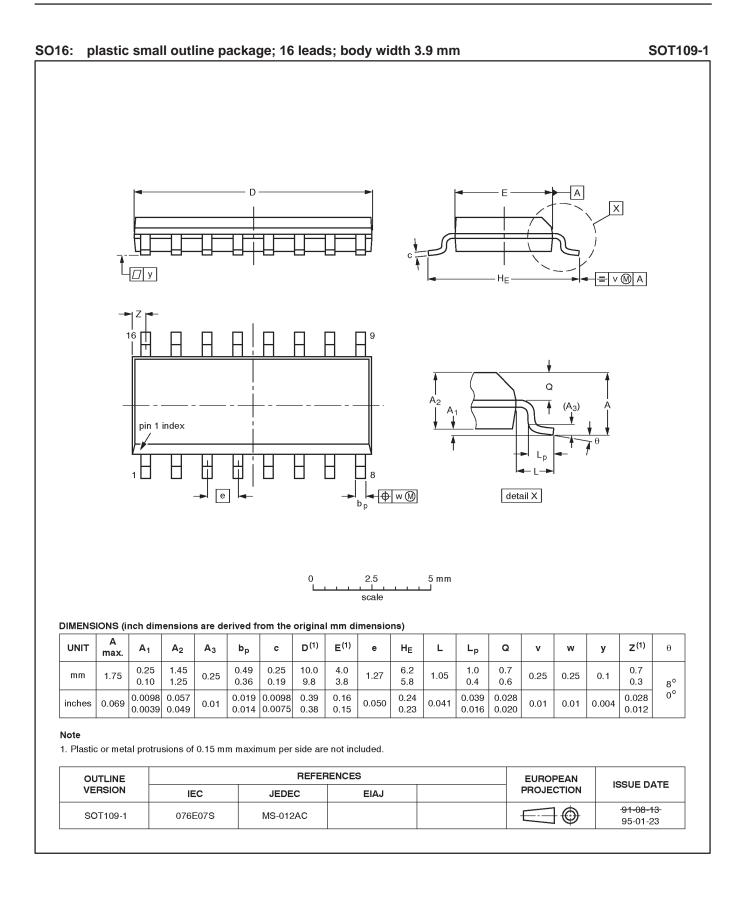

Waveform 2. Input (CET) to output (TC) propagation delays.

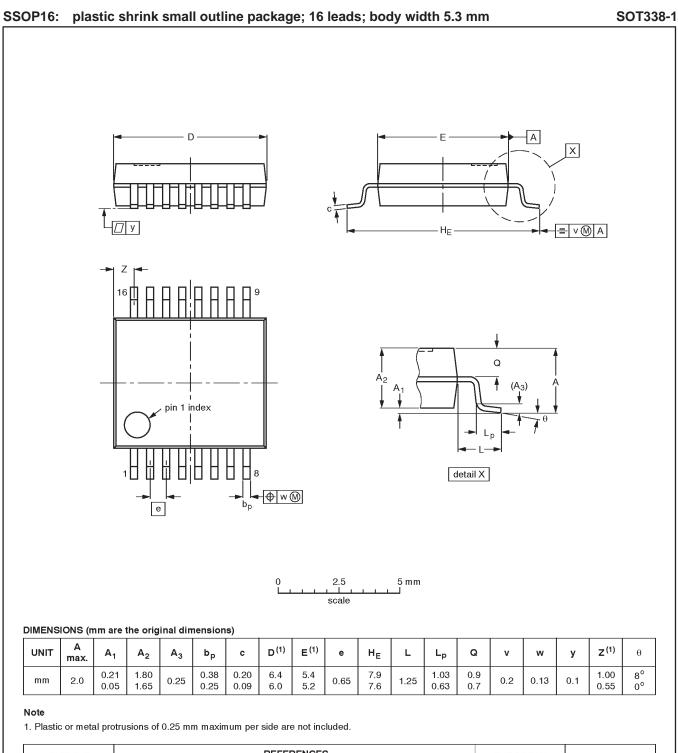
Waveform 3. Master reset (MR) pulse width, the master reset to output (Q_n , TC) propagation delays and the master reset to clock (CP) removal times.



Waveform 4. Setup and hold times for the input (D_n) and parallel enable input (PE).

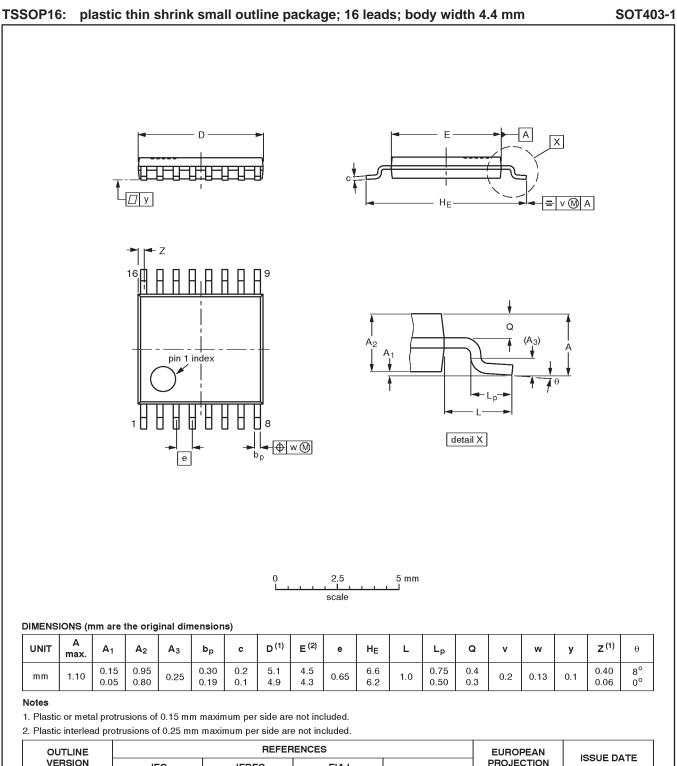
Waveform 5. CEP and CET setup and hold times.


TEST CIRCUIT



74LVC163

Product specification


74LVC163

OUTLINE		REFERENCES EUROPEAN				ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE
SOT338-1		MO-150AC				-94-01-14- 95-02-04

1998 May 20

74LVC163

DEFINITIONS					
Data Sheet Identification Product Status Definition		Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

> print code Document order number:

Date of release: 05-96 9397-750-04497

Let's make things better.

