# INTEGRATED CIRCUITS



Product specification Supercedes data of 1993 Dec 01 IC24 Data Handbook

1998 Jul 29



Philips Semiconductors

### 74LVC652

#### \*FEATURES

- Wide supply voltage range of 1.2V to 3.6V
- In accordance with JEDEC standard no. 8-1A
- CMOS low power consumption
- Direct interface with TTL levels
- 5 Volt tolerant inputs/outputs, for interfacing with 5 Volt logic

#### DESCRIPTION

The 74LVC652 is a high performance, low-power, low-voltage Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

Inputs can be driven from either 3.3V or 5.0V devices. In 3-State operation, outputs can handle 5V. This feature allows the use of these devices as translators in a mixed 3.3V/5V environment.

The 74LVC652 consist of 8 non-inverting bus transceiver circuits with 3-State outputs, D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the internal registers. Data on the 'A' or 'B' or both buses, will be stored in the internal registers, at the appropriate clock inputs (CPAB or CPBA) regardless of the select inputs (SAB and SBA) or output enable (OEAB and OEBA) control inputs. Depending on the select inputs SAB and SBA data can directly go from input to output (real time mode) or data can be controlled by the clock (storage mode), this is when the OEn inputs this operating mode permits. The output enable inputs OEAB and OEBA determine the operation mode of the transceiver.

When OEAB is LOW, no data transmission from An to Bn is possible and when OEBA is HIGH, there is no data transmission from Bn to An possible. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration each output reinforces its input.

#### QUICK REFERENCE DATA

GND = 0V T<sub>amb</sub> = 25°C t<sub>r</sub> = t<sub>f</sub> < 2.5 ns

| SYMBOL                             | PARAMETER                                                                                | CONDITIONS                       | TYPICAL | UNIT |
|------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|---------|------|
| t <sub>PHL</sub> /t <sub>PLH</sub> | Propagation delay<br>A <sub>n</sub> to B <sub>n</sub> ; B <sub>n</sub> to A <sub>n</sub> | $C_{L} = 50 pF$ $V_{CC} = 3.3 V$ | 5.0     | ns   |
| f <sub>max</sub>                   | Maximum clock frequency                                                                  | 1                                | 150     | MHz  |
| Cl                                 | Input capacitance                                                                        |                                  | 5.0     | pF   |
| C <sub>PD</sub>                    | Power dissipation capacitance per latch                                                  | Notes 1, 2                       | 45      | pF   |

NOTES:

1.  $C_{PD}$  is used to determine the dynamic power dissipation (P<sub>D</sub> in  $\mu$ W)  $\begin{array}{l} \mathsf{P}_{D} = \mathsf{C}_{PD} \times \mathsf{V}_{CC}{}^{2} \times \mathsf{f}_{i} + \Sigma \left(\mathsf{C}_{L} \times \mathsf{V}_{CC}{}^{2} \times \mathsf{f}_{o}\right) \text{ where:} \\ \mathsf{f}_{i} = \mathsf{input} \text{ frequency in MHz}; \mathsf{C}_{L} = \mathsf{output} \text{ load capacitance in pF}; \\ \mathsf{f}_{o} = \mathsf{output} \text{ frequency in MHz}; \mathsf{V}_{CC} = \mathsf{supply voltage in V}; \\ \end{array}$ 

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$ 

2. The condition is  $V_1 = GND$  to  $V_{CC}$ .

#### **ORDERING AND PACKAGE INFORMATION**

| PACKAGES                    | TEMPERATURE RANGE | OUTSIDE NORTH<br>AMERICA | NORTH AMERICA | PKG. DWG. # |
|-----------------------------|-------------------|--------------------------|---------------|-------------|
| 24-Pin Plastic SO           | –40°C to +85°C    | 74LVC652 D               | 74LVC652 D    | SOT137-1    |
| 24-Pin Plastic SSOP Type II | –40°C to +85°C    | 74LVC652 DB              | 74LVC652 DB   | SOT340-1    |
| 24-Pin Plastic TSSOP Type I | –40°C to +85°C    | 74LVC652 PW              | 4LVC652PW DH  | SOT355-1    |

**PIN CONFIGURATION** 

## Octal transceiver/register with dual enable (3-State)

### 74LVC652

#### CP<sub>AB</sub> 1 24 V<sub>CC</sub> 23 CP BA S<sub>AB</sub> 2 OE AB 3 22 S<sub>BA</sub> 21 OE BA A<sub>0</sub> 4 A<sub>1</sub>5 20 B<sub>0</sub> 19 B<sub>1</sub> A<sub>2</sub>6 18 B<sub>2</sub> A3 7 A<sub>4</sub>8 17 B<sub>3</sub> 16 B<sub>4</sub> A<sub>5</sub>9 15 B<sub>5</sub> A<sub>6</sub> 10 A<sub>7</sub> 11 14 B<sub>6</sub> 13 B<sub>7</sub> GND 12 SV00767

#### **PIN DESCRIPTION**

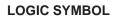
| PIN NUMBER                        | SYMBOL                           | FUNCTION                                                |
|-----------------------------------|----------------------------------|---------------------------------------------------------|
| 1                                 | CP <sub>AB</sub>                 | 'A' to 'B' clock input<br>(LOW-to-HIGH, edge-triggered) |
| 2                                 | S <sub>AB</sub>                  | Select 'A' to 'B' source input                          |
| 3                                 | OE <sub>AB</sub>                 | Output enable B to A input (active LOW)                 |
| 4, 5, 6, 7, 8,<br>9, 10, 11       | A <sub>0</sub> to A <sub>7</sub> | 'A' data inputs/outputs                                 |
| 12                                | GND                              | Ground (0V)                                             |
| 20, 19, 18, 17,<br>16, 15, 14, 13 | B <sub>0</sub> to B <sub>7</sub> | 'B' data inputs/outputs                                 |
| 21                                | OE <sub>BA</sub>                 | Output enable A to B input                              |
| 22                                | S <sub>BA</sub>                  | Select 'B' to 'A' source input                          |
| 23                                | CP <sub>BA</sub>                 | 'B' to 'A' clock input<br>(LOW-to-HIGH, edge-triggered) |
| 24                                | V <sub>CC</sub>                  | Positive supply voltage                                 |

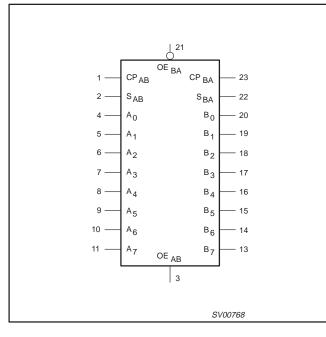
#### **FUNCTION TABLE**

|                  | INPUTS |                                 |                                 |                 |                 |                                  | \ I/O *                          | FUNCTION                                          |
|------------------|--------|---------------------------------|---------------------------------|-----------------|-----------------|----------------------------------|----------------------------------|---------------------------------------------------|
| OE <sub>AB</sub> | OEBA   | CP <sub>AB</sub>                | CPBA                            | S <sub>AB</sub> | S <sub>BA</sub> | A <sub>0</sub> to A <sub>7</sub> | B <sub>0</sub> to B <sub>7</sub> | FUNCTION                                          |
| L<br>L           | H<br>H | H or L<br>↑                     | H or L<br>↑                     | X<br>X          | X<br>X          | input                            | input                            | isolation<br>store A and B data                   |
| X<br>H           | H<br>H | $\stackrel{\uparrow}{\uparrow}$ | H or L<br>↑                     | X<br>L          | X<br>X          | input<br>input                   | un *<br>output                   | store A, hold B,<br>store A in both registers     |
| L<br>L           | X<br>L | H or L<br>↑                     | $\stackrel{\uparrow}{\uparrow}$ | X<br>X          | X<br>L          | un *<br>output                   | input<br>input                   | hold A, store B,<br>store B in both registers     |
| L<br>L           | L<br>L | X<br>X                          | X<br>H or L                     | X<br>X          | L<br>H          | output                           | input                            | real-time B data to A bus stored B data to A bus  |
| H<br>H           | H<br>H | X<br>H or L                     | X<br>X                          | L<br>H          | X<br>X          | input                            | output                           | real-time A data to B bus stored A data to B bus  |
| Н                | L      | H or L                          | H or L                          | Н               | н               | output                           | output                           | stored A data to B bus and stored B data to A bus |

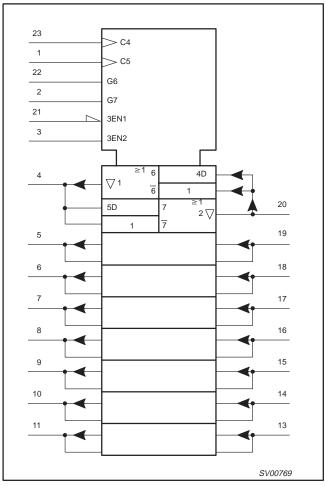
The data output functions may be enabled or disabled by various signals at the  $OE_{AB}$  and  $\overline{OE}_{BA}$  inputs. Data input functions are always enabled, i.e., data at the bus inputs will be stored on every LOW-to-HIGH transition on the clock

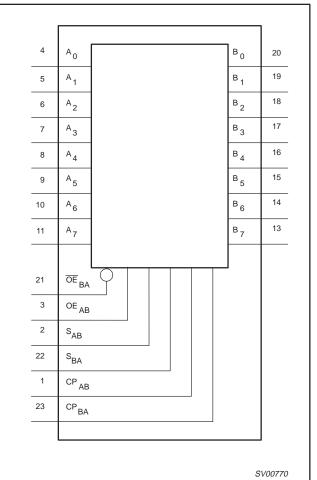
inputs.


Н


= HIGH voltage level = LOW voltage level

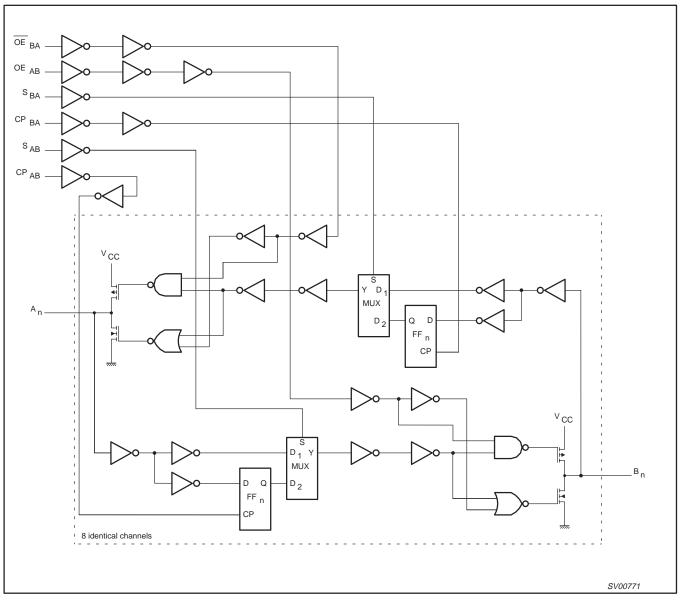
L X ↑ = Don't care


= LOW-to-HIGH level transition


## 74LVC652






### LOGIC SYMBOL (IEEE/IEC)





### FUNCTIONAL DIAGRAM

### LOGIC DIAGRAM



#### **RECOMMENDED OPERATING CONDITIONS**

| SYMBOL                          | PARAMETER                                        | CONDITIONS                                                                         | LIM    | UNIT            |      |  |
|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|--------|-----------------|------|--|
| STWIDOL                         | FARAMETER                                        | CONDITIONS                                                                         | MIN    | MAX             | C. T |  |
| Vcc                             | DC supply voltage (for max. speed performance)   |                                                                                    | 2.7    | 3.6             | V    |  |
| VCC                             | DC supply voltage (for low-voltage applications) |                                                                                    | 1.2    | 3.6             | v    |  |
| VI                              | DC input voltage range                           |                                                                                    | 0      | 5.5             | V    |  |
| V <sub>I/O</sub>                | DC input voltage range for I/Os                  |                                                                                    | 0      | V <sub>CC</sub> | V    |  |
| Vo                              | DC output voltage range                          |                                                                                    | 0      | V <sub>CC</sub> | V    |  |
| T <sub>amb</sub>                | Operating free-air temperature range             |                                                                                    | -40    | +85             | °C   |  |
| t <sub>r</sub> , t <sub>f</sub> | Input rise and fall times                        | $V_{CC} = 1.2 \text{ to } 2.7 \text{V}$<br>$V_{CC} = 2.7 \text{ to } 3.6 \text{V}$ | 0<br>0 | 20<br>10        | ns/V |  |

#### ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

| SYMBOL                             | PARAMETER                                                                                                   | CONDITIONS                                                                           | RATING                       | UNIT |
|------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------|------|
| V <sub>CC</sub>                    | DC supply voltage                                                                                           |                                                                                      | -0.5 to +4.6                 | V    |
| I <sub>IK</sub>                    | DC input diode current                                                                                      | V <sub>1</sub> < 0                                                                   | -50                          | mA   |
| VI                                 | DC input voltage                                                                                            | Note 2                                                                               | –0.5 to +5.5                 | V    |
| I <sub>OK</sub>                    | DC output diode current                                                                                     | $V_{O} > V_{CC} \text{ or } V_{O} < 0$                                               | ±50                          | mA   |
| Mus                                | DC output voltage;<br>output HIGH or LOW                                                                    | Note 2                                                                               | –0.5 to V <sub>CC</sub> +0.5 | V    |
| V <sub>I/O</sub>                   | DC input voltage;<br>output 3-State                                                                         | Note 2                                                                               | –0.5 to V <sub>CC</sub> +0.5 | V    |
| ۱ <sub>۵</sub>                     | DC output diode current                                                                                     | $V_{O} = 0$ to $V_{CC}$                                                              | ±50                          | mA   |
| I <sub>GND</sub> , I <sub>CC</sub> | DC V <sub>CC</sub> or GND current                                                                           |                                                                                      | ±100                         | mA   |
| T <sub>stg</sub>                   | Storage temperature range                                                                                   |                                                                                      | -65 to +150                  | °C   |
| Ртот                               | Power dissipation per package<br>– plastic mini-pack (SO)<br>– plastic shrink mini-pack (SSOP and<br>TSSOP) | above +70°C derate linearly with 8 mW/K<br>above +60°C derate linearly with 5.5 mW/K | 500<br>500                   | mW   |

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

### 74LVC652

#### DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

|                                    |                                                   |                                                                             | L                        | UNIT                 |      |      |    |
|------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|----------------------|------|------|----|
| SYMBOL                             | PARAMETER                                         | TEST CONDITION                                                              | Temp = -                 |                      |      |      |    |
|                                    |                                                   |                                                                             |                          |                      |      | MAX  |    |
| M                                  |                                                   | V <sub>CC</sub> = 1.2V                                                      |                          | V <sub>CC</sub>      |      |      | v  |
| V <sub>IH</sub>                    | HIGH level Input voltage                          | V <sub>CC</sub> = 2.7 to 3.6V                                               |                          | 2.0                  |      |      |    |
| M                                  |                                                   | V <sub>CC</sub> = 1.2V                                                      |                          |                      |      | GND  | V  |
| V <sub>IL</sub>                    | LOW level Input voltage                           | V <sub>CC</sub> = 2.7 to 3.6V                                               |                          |                      |      | 0.8  |    |
|                                    |                                                   | $V_{CC}$ = 2.7V; $V_{I}$ = $V_{IH}$ or $V_{IL}$ ; $I_{O}$ =                 | = –12mA                  | $V_{CC} - 0.5$       |      |      |    |
| M                                  | HIGH level output voltage                         | $V_{CC}$ = 3.0V; $V_{I}$ = $V_{IH}$ or $V_{IL}$ ; $I_{O}$ =                 | V <sub>CC</sub> -0.2     | V <sub>CC</sub>      |      | v    |    |
| V <sub>OH</sub>                    | The nevel output voltage                          | $V_{CC}$ = 3.0V; $V_I$ = $V_{IH}$ or $V_{IL}$ ; $I_O$ = -18mA               |                          | V <sub>CC</sub> -0.6 |      |      |    |
|                                    |                                                   | $V_{CC}$ = 3.0V; $V_{I}$ = $V_{IH}$ or $V_{IL}$ ; $I_{O}$ =                 | $V_{CC} - 0.8$           |                      |      |      |    |
|                                    |                                                   | $V_{CC} = 2.7$ V; $V_{I} = V_{IH}$ or $V_{IL}$ ; $I_{O} =$                  | = 12mA                   |                      |      | 0.40 |    |
| V <sub>OL</sub>                    | LOW level output voltage                          | $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O$                       | = 100µA                  |                      | GND  | 0.20 | V  |
|                                    |                                                   | $V_{CC}$ = 3.0V; $V_{I}$ = $V_{IH}$ or $V_{IL}$ ; $I_{O}$ =                 | = 24mA                   |                      |      | 0.55 |    |
| I <sub>I</sub>                     | Input leakage current                             | $V_{CC} = 3.6V; V_{I} = 5.5V \text{ or GND}$                                | Not for I/O pins         |                      | ±0.1 | ±5   | μA |
| I <sub>IHZ</sub> /I <sub>ILZ</sub> | Input current for common I/O pins                 | $V_{CC} = 3.6V; V_{I} = 5.5V \text{ or GND}$                                | -                        |                      | ±0.1 | ±15  | μA |
| I <sub>OZ</sub>                    | 3-State output OFF-state current                  | $V_{CC} = 3.6V; V_I = V_{IH} \text{ or } V_{IL}; V_O = 5.5V \text{ or GND}$ |                          |                      | 0.1  | ±10  | μΑ |
| I <sub>OFF</sub>                   | Power off leakage current                         | $V_{CC} = 0.0V; V_{I} = 5.5V; V_{O} = 5.5V$                                 |                          |                      | 0.1  | ±10  | μA |
| I <sub>CC</sub>                    | Quiescent supply current                          | $V_{CC}$ = 3.6V; $V_{I}$ = $V_{CC}$ or GND; I                               |                          | 0.1                  | 10   | μΑ   |    |
| $\Delta I_{CC}$                    | Additional quiescent supply current per input pin | $V_{CC} = 2.7V$ to 3.6V; $V_{I} = V_{CC} - 0.000$                           | 0.6V; I <sub>O</sub> = 0 |                      | 5    | 500  | μA |

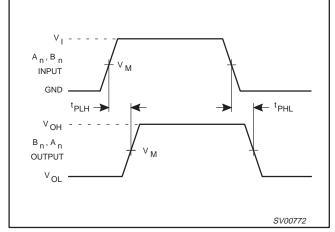
NOTES:

1. All typical values are at V\_{CC} = 3.3V and T\_{amb} = 25°C.

### 74LVC652

#### **AC CHARACTERISTICS**

GND = 0 V;  $t_r$  =  $t_f$   $\leq$  2.5 ns;  $C_L$  = 50 pF


|                                    |                                                                                             |              | LIMITS          |                  |      |                   |        |                   |        |      |
|------------------------------------|---------------------------------------------------------------------------------------------|--------------|-----------------|------------------|------|-------------------|--------|-------------------|--------|------|
| SYMBOL                             | PARAMETER                                                                                   | WAVEFORM     | V <sub>CC</sub> | = 3.3V ±         | 0.3V | V <sub>CC</sub> = | = 2.7V | V <sub>CC</sub> = | = 1.2V | UNIT |
|                                    |                                                                                             |              | MIN             | TYP <sup>1</sup> | MAX  | MIN               | MAX    | MIN               | TYP    |      |
| t <sub>PHL</sub> /t <sub>PLH</sub> | Propagation delay<br>An to Bn, Bn to An                                                     | Figures 1, 5 | 1.5             | 4.6              | 7.9  | 1.5               | 9.2    | 1.5               | 24     | ns   |
| t <sub>PHL</sub> /t <sub>PLH</sub> | Propagation delay<br>CP <sub>AB</sub> , CP <sub>BA</sub> to B <sub>n</sub> , A <sub>n</sub> | Figures 2, 5 | 1.5             | 5.2              | 8.9  | 1.5               | 11     | 1.5               | 26     | ns   |
| t <sub>PHL</sub> /t <sub>PLH</sub> | Propagation delay $S_{AB}$ , $S_{BA}$ to $B_n$ , $A_n$                                      | Figures 3, 5 | 1.5             | 5.2              | 8.8  | 1.5               | 11     | 1.5               | 27     | ns   |
| t <sub>PZH</sub> /t <sub>PZL</sub> | 3-State output enable time<br>OE <sub>AB</sub> to Bn                                        | Figures 4, 5 | 1.5             | 4.8              | 8.0  | 1.5               | 10     | 1.5               | 20     | ns   |
| t <sub>PHZ</sub> /t <sub>PLZ</sub> | 3-State output disable time<br>OE <sub>AB</sub> to Bn                                       | Figures 4, 5 | 1.5             | 4.4              | 8.0  | 1.5               | 10     | 1.5               | 10     | ns   |
| t <sub>PZH</sub> /t <sub>PZL</sub> | 3-State output enable time $\overline{OE}_{BA}$ to An                                       | Figures 4, 5 | 1.5             | 4.8              | 8.0  | 1.5               | 10     | 1.5               | 20     | ns   |
| t <sub>PHZ</sub> /t <sub>PLZ</sub> | 3-State output disable time<br>OE <sub>BA</sub> to An                                       | Figures 4, 5 | 1.5             | 4.4              | 8.0  | 1.5               | 10     | 1.5               | 10     | ns   |
| t <sub>W</sub>                     | Clock pulse width<br>HIGH or LOW<br>CP <sub>AB</sub> or CP <sub>BA</sub>                    | Figures 4, 5 | -               | 3.0              | -    | 3.0               | -      | -                 | -      | ns   |
| t <sub>su</sub>                    | Set-up time<br>An, Bn to CP <sub>AB</sub> , CP <sub>BA</sub>                                | Figure 2     | 1.5             | 0.5              | -    | 1.5               | -      | -                 | -      | ns   |
| t <sub>h</sub>                     | Hold time<br>An, Bn to CP <sub>AB</sub> , CP <sub>BA</sub>                                  | Figure 2     | 1.0             | 0                | _    | 1.0               | _      | -                 | -      | ns   |
| f <sub>max</sub>                   | Maximum clock pulse<br>frequency                                                            | Figure 2     | 7.5             | 150              | -    | -                 | -      | -                 | -      | MHz  |

NOTE:

1. These typical values are at V<sub>CC</sub> = 3.3V and T<sub>amb</sub> = 25°C.

#### AC WAVEFORMS

 $\begin{array}{l} V_M = 1.5 V \mbox{ at } V_{CC} \geq 2.7 V \\ V_M = 0.5 V \mbox{ }^* V_{CC} \mbox{ at } V_{CC} < 2.7 V \\ V_{OL} \mbox{ and } V_{OH} \mbox{ are the typical output voltage drop that occur with the output load.} \\ V_X = V_{OL} + 0.3 V \mbox{ at } V_{CC} \geq 2.7 V \\ V_X = V_{OL} + 0.1 V_{CC} \mbox{ at } V_{CC} < 2.7 V \\ V_Y = V_{OH} - 0.3 V \mbox{ at } V_{CC} \geq 2.7 V \\ V_Y = V_{OH} - 0.1 V_{CC} \mbox{ at } V_{CC} < 2.7 V \\ \end{array}$ 





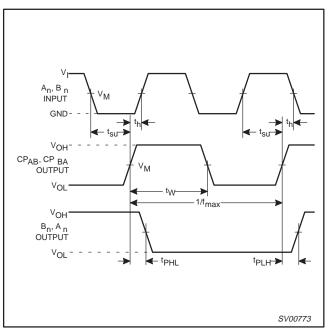



Figure 2. A<sub>n</sub>, B<sub>n</sub> to CP<sub>AB</sub>, CP<sub>BA</sub> set-up and hold times, clock CP<sub>AB</sub>, CP<sub>BA</sub> pulse width, maximum clock pulse frequency and the CP<sub>AB</sub>, CP<sub>BA</sub> to output B<sub>n</sub>, A<sub>n</sub> propagation delays.

### 74LVC652

#### AC WAVEFORMS (Continued)

 $\begin{array}{l} \mathsf{V}_{M}=1.5\mathsf{V} \text{ at } \mathsf{V}_{CC} \geq 2.7\mathsf{V} \\ \mathsf{V}_{M}=0.5\mathsf{V}^{*} \mathsf{V}_{CC} \text{ at } \mathsf{V}_{CC} < 2.7\mathsf{V} \\ \mathsf{V}_{OL} \text{ and } \mathsf{V}_{OH} \text{ are the typical output voltage drop that occur with the output load.} \\ \mathsf{V}_{X}=\mathsf{V}_{OL}+0.3\mathsf{V} \text{ at } \mathsf{V}_{CC} \geq 2.7\mathsf{V} \\ \mathsf{V}_{X}=\mathsf{V}_{OL}+0.1\mathsf{V}_{CC} \text{ at } \mathsf{V}_{CC} < 2.7\mathsf{V} \\ \mathsf{V}_{Y}=\mathsf{V}_{OH}-0.3\mathsf{V} \text{ at } \mathsf{V}_{CC} \geq 2.7\mathsf{V} \\ \mathsf{V}_{Y}=\mathsf{V}_{OH}-0.3\mathsf{V} \text{ at } \mathsf{V}_{CC} \geq 2.7\mathsf{V} \\ \mathsf{V}_{Y}=\mathsf{V}_{OH}-0.1\mathsf{V}_{CC} \text{ at } \mathsf{V}_{CC} < 2.7\mathsf{V} \\ \end{array}$ 

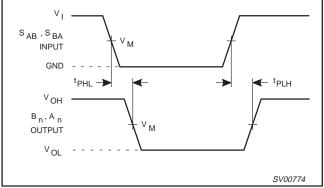



Figure 3. Input S<sub>AB</sub>, S<sub>BA</sub> to output B<sub>n</sub>, A<sub>n</sub> propagation delay times.

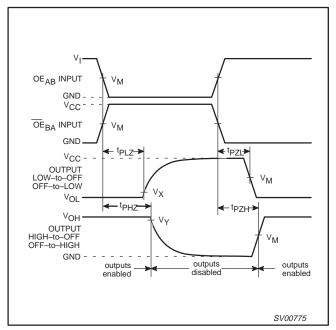
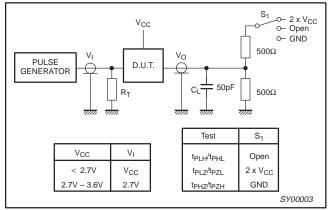
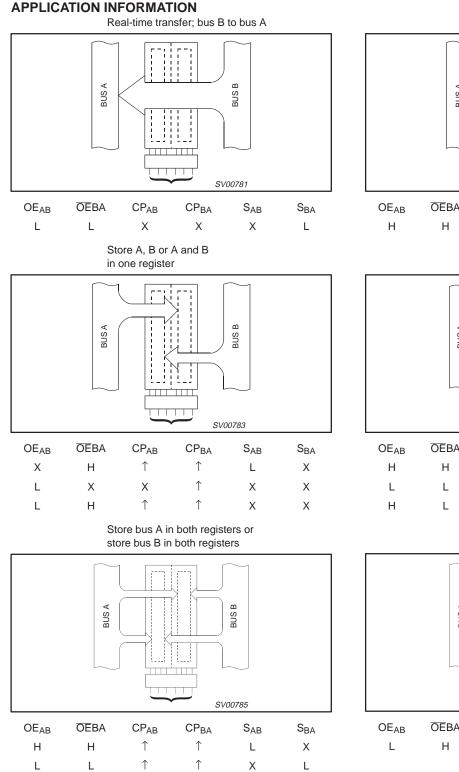
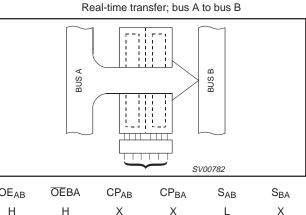
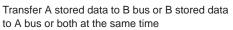
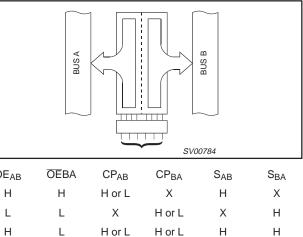


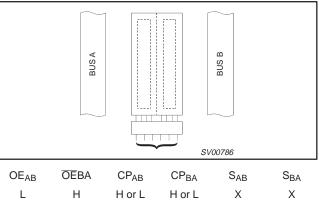

Figure 4. OE inputs (OE<sub>AB</sub>,  $\overline{OE}_{BA}$ ) to outputs A<sub>n</sub>, B<sub>n</sub> enable and disable times.

#### **TEST CIRCUIT**



Figure 5. Load circuitry for switching times.

### 74LVC652










Isolation



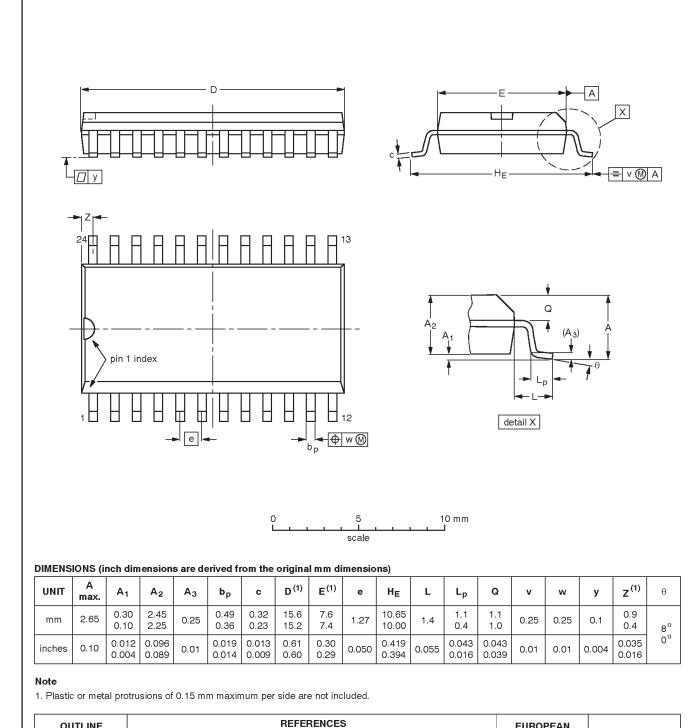
1998 Jul 29

OUTLINE

VERSION

SOT137-1

IEC


075E05

JEDEC

MS-013AD

### Octal transceiver/register with dual enable (3-State)

#### plastic small outline package; 24 leads; body width 7.5 mm SO24:

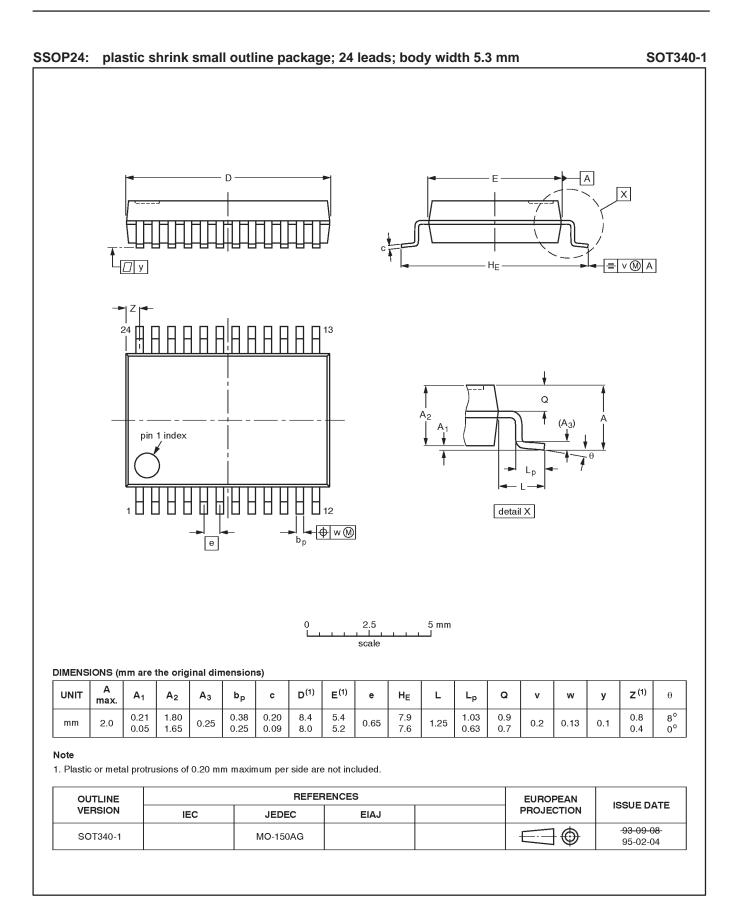


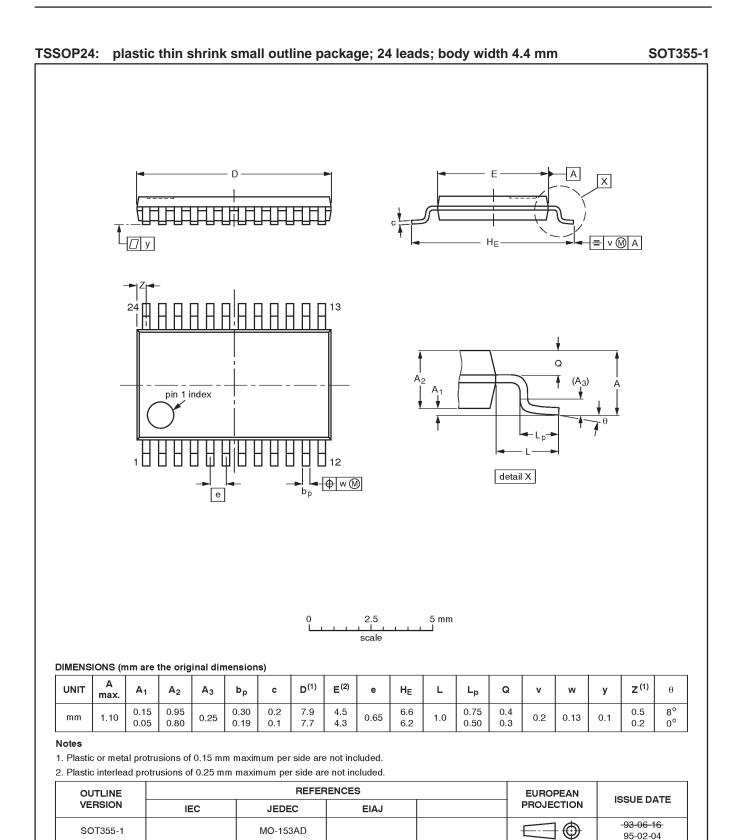
SOT137-1

### 74LVC652

EIAJ

EUROPEAN


PROJECTION


 $\odot$ 

**ISSUE DATE** 

95-01-24

97-05-22





### 74LVC652

#### Data sheet status

| Data sheet<br>status      | Product<br>status | Definition [1]                                                                                                                                                                                                                                                  |
|---------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective specification   | Development       | This data sheet contains the design target or goal specifications for product development.<br>Specification may change in any manner without notice.                                                                                                            |
| Preliminary specification | Qualification     | This data sheet contains preliminary data, and supplementary data will be published at a later date.<br>Philips Semiconductors reserves the right to make chages at any time without notice in order to<br>improve design and supply the best possible product. |
| Product specification     | Production        | This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.                                                            |

[1] Please consult the most recently issued datasheet before initiating or completing a design.

#### Definitions

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

**Right to make changes** — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 08-98 9397-750-04517

Let's make things better.



PHILIPS