

74LVT126 3.3V Quad buffer (3-State)

Product specification
Supersedes data of 1995 Dec 21
IC23 Data Handbook

PHILIPS

3.3V Quad buffer (3-State)

FEATURES

- Quad bus interface
- 3-State buffers
- Output capability: $+64 \mathrm{~mA} /-32 \mathrm{~mA}$
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- No bus current loading when output is tied to 5 V bus
- Power-up 3-State
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

DESCRIPTION

The LVT126 is a high-performance BiCMOS product designed for $V_{C C}$ operation at 3.3 V .
This device combines low static and dynamic power dissipation with high speed and high output drive.
The 74LVT126 device is a quad buffer that is ideal for driving bus lines. The device features four Output Enables (OEO, OE1, OE2, OE3), each controlling one of the 3-State outputs.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	$\begin{gathered} \text { CONDITIONS } \\ \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \text { GND }=0 \mathrm{~V} \end{gathered}$	TYPICAL	UNIT
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL }^{2} \end{aligned}$	Propagation delay An to Yn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	$\begin{aligned} & \hline 2.3 \\ & 2.4 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
Cout	Output capacitance	Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or 3.0V	8	pF
ICCZ	Total supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	0.13	mA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
14-Pin Plastic SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVT126 D	74 LVT126 D	SOT108- 1
14-Pin Plastic SSOP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVT126 DB	$74 \mathrm{LVT126} \mathrm{DB}$	SOT337-1
14-Pin Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVT126 PW	$74 \mathrm{LVT126PW}$ DH	SOT402- 1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
$2,5,9,12$	$\mathrm{~A} 0-\mathrm{A} 3$	Data inputs
$3,6,8,11$	$\mathrm{Y} 0-\mathrm{Y} 3$	Data outputs
$1,4,10,13$	OE0 - OE3	Output enable inputs
7	GND	Ground (OV)
14	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage

PIN CONFIGURATION

LOGIC SYMBOL
AO

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS		OUTPUTS
OEn	An	Yn
H	L	L
H	H	H
L	X	Z

H = High voltage level
L = Low voltage level
$\mathrm{X}=$ Don't care
Z = High impedance "off" state

ABSOLUTE MAXIMUM RATINGS, 2

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +4.6	V
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage 3		-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	DC output voltage 3		-0.5 to +7.0	V
$\mathrm{I}_{\text {OUT }}$	DC output current	Output in Off or High state	128	mA
	DC input diode current	Output in Low state	-64	mA
I_{OK}	DC output diode current	Out in High State	-50	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	$\mathrm{V}_{\mathrm{I}}<0$	-50	mA

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN	MAX	
V_{CC}	DC supply voltage	2.7	3.6	V
V_{1}	Input voltage	0	5.5	V
V_{IH}	High-level input voltage	2.0		V
V_{IL}	Low-level input voltage		0.8	V
IOH	High-level output current		-32	mA
lol	Low-level output current		32	mA
	Low-level output current; current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$		64	
$\Delta t / \Delta v$	Input transition rise or fall rate; outputs enabled		10	ns / V
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND
3. This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at V_{CC} or GND.
5. $\mathrm{I}_{C C Z}$ is measured with outputs pulled up to V_{CC} or down to $G N D$.
6. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS				UNIT
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	
			MIN	TYP ${ }^{1}$	MAX	MAX	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay An to Yn	1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.4 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & t_{\text {tpzL }} \end{aligned}$	Output enable time OEn to Yn	2	$\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 5.8 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	Output disable time OEn to Yn	2	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 6.1 \end{aligned}$	ns

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC WAVEFORMS

Waveform 1. Input (An) to Output (Yn) Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	0.7 0.3	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT108-1	076E06S	MS-012AB		\square (¢)	$\begin{aligned} & -95-01-23 \\ & 97-05-22 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} A \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathbf{Z}^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{gathered} 6.4 \\ 6.0 \end{gathered}$	5.4	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 1.4 \\ & 0.9 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT337-1		MO-150AB		- ¢	$\begin{aligned} & -95-02-04 \\ & 96-01-18 \end{aligned}$

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	$\mathbf{1 . 1 0}$	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0.6	6.6	1.0	0.75	0.4	0.2	0.13	0.1	0.72	8°
	0.05	0.80	0.2	0.19	0.1	4.9	4.3	0.65	6.2	1.0	0.50	0.3	0.2	0.38	0°			

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT402-1		MO-153			$-94-07-12$	

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

