
INTEGRATED CIRCUITS

Product specification

1999 Sep 23

IC23 Data Handbook

74LVT162374

FEATURES

- 16-bit edge-triggered flip-flop
- 3-State buffers
- Output capability: +12 mA / -12 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Outputs include series resistance of 30 Ω making external resistors unnecessary
- Power-up reset
- Power-up 3-State
- No bus current loading when output is tied to 5 V bus
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

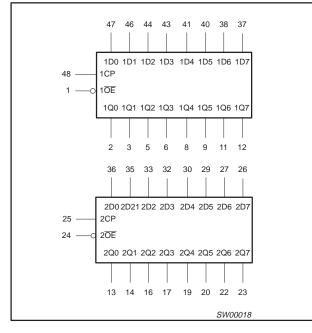
DESCRIPTION

The 74LVT162374 is a high-performance BiCMOS product designed for V_{CC} operation at 3.3 V.

The 74LVT162374 is designed with 30 Ω series resistance in both the High and Low states of the output. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus receivers/transmitters.

This device is a 16-bit edge-triggered D-type flip-flop featuring non-inverting 3-State outputs. The device can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CP), the Q outputs of the flip-flop take on the logic levels set up at the D inputs.

SYMBOL	PARAMETER	PARAMETER CONDITIONS T _{amb} = 25°C		UNIT
t _{PLH} t _{PHL}	Propagation delay nCP to nQx	$C_L = 50 pF;$ $V_{CC} = 3.3 V$	2.9	ns
C _{IN}	Input capacitance	$V_{I} = 0V \text{ or } 3.0V$	3	pF
C _{OUT}	Output pin capacitance	Outputs disabled; $V_0 = 0V \text{ or } 3.0V$	9	pF
I _{CCZ}	Total supply current	Outputs disabled; $V_{CC} = 3.6V$	70	μΑ


ORDERING INFORMATION

QUICK REFERENCE DATA

PACKAGES	TEMPERATURE RANGE	ORDERING CODE	DWG NUMBER
48-Pin Plastic SSOP Type III	–40°C to +85°C	74LVT162374 DL	SOT370-1
48-Pin Plastic TSSOP Type II	–40°C to +85°C	74LVT162374 DGG	SOT362-1

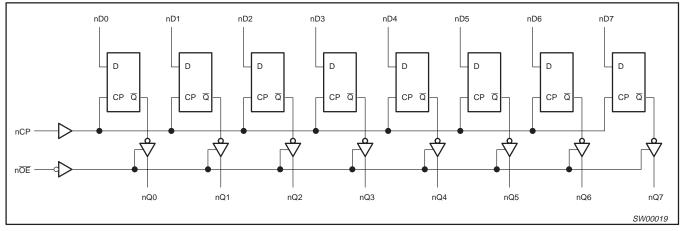
74LVT162374

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

		/			
1 0E	<u>1</u> N	1EN			
1CP	48	► C1			
2 0E	24	2EN			
2CP	25	► C2			
	47	<u> </u>			
1D1	47	1D	1 🗸	2	1Q1
1D2	46			3	1Q2
1D3	44			5	1Q3
1D4	43			6	1Q4
1D5	41			8	1Q5
1D6	40			9	1Q6
1D0 1D7	38			11	1Q0 1Q7
	37		[12	
1D8	36			13	1Q8
2D1	35	2D	2 ⊽		2Q1
2D2	33			14	2Q2
2D3				16	2Q3
2D4	32		\neg	17	2Q4
2D5	30			19	2Q5
2D6	29			20	2Q6
2D7	27			22	2Q7
2D8	26			23	2Q8
200				SWO	200
					-

PIN CONFIGURATION


		1	
1 0E	1	48	1CP
1Q0	2	47	1D0
!Q1	3	46	1D1
GND	4	45	GND
1Q2	5	44	1D2
1Q3	6	43	1D3
V _{CC}	7	42	V _{CC}
1Q4	8	41	1D4
1Q5	9	40	1D5
GND	10	39	GND
1Q6	11	38	1D6
1Q7	12	37	1D7
2Q0	13	36	2D0
2Q1	14	35	2D1
GND	15	34	GND
2Q2	16	33	2D2
2Q3	17	32	2D3
V _{CC}	18	31	V _{CC}
2Q4	19	30	2D4
2Q5	20	29	2D5
GND	21	28	GND
2Q6	22	27	2D6
2Q7	23	26	2D7
2 0E	24	25	2CP
		J	
	SWOO	017	

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
47, 46, 44, 43, 41, 40, 38, 37 36, 35, 33, 32, 30, 29, 27, 26	1D0 - 1D7 2D0 - 2D7	Data inputs
2, 3, 5, 6, 8, 9, 11, 12 13, 14, 16, 17, 19, 20, 22, 23	1Q0 - 1Q7 2Q0 - 2Q7	Data outputs
1, 24	1 <u>0E</u> , 2 <u>0E</u>	Output enable inputs (active-Low)
48, 25	1CP, 2CP	Clock pulse inputs (active rising edge)
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage

74LVT162374

LOGIC DIAGRAM

FUNCTION TABLE

	INPUTS		INTERNAL	OUTPUTS	OPERATING MODE		
nOE	nCP	nDx	REGISTER	nQ0 - nQ7			
L	↑ ↑	l h	L H	L H	Load and read register		
L	¢	Х	NC	NC	Hold		
H H	↑ ↑	X nDx	NC nDx	Z Z	Disable outputs		

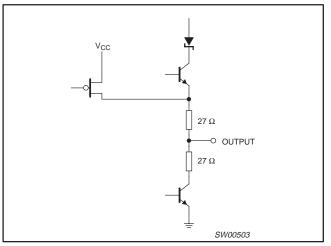
H = High voltage level

h = High voltage level one set-up time prior to the High-to-Low E transition

Low voltage level L =

Low voltage level one set-up time prior to the High-to-Low E transition Т =

NC= No change


X = Don't care

= High impedance "off" state

Z ↑ =

Low-to-High clock transition Not a Low-to-High clock transition Ţ =

SCHEMATIC OF EACH OUTPUT

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
V _I DC input voltage ³			-0.5 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +7.0	V
	DC output current	Output in Low state	128	
IOUT		Output in High state	-64	- mA
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction 2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWBOL	FARAIVIETER	MIN	MIN MAX	
V _{CC}	DC supply voltage	2.7	3.6	V
VI	Input voltage	0	5.5	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Input voltage		0.8	V
I _{ОН}	High-level output current		-12	mA
I _{OL}	Low-level output current		12	mA
Δt/Δv	Input transition rise or fall rate; Outputs enabled		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

74LVT162374

DC ELECTRICAL CHARACTERISTICS

		TEST CONDITIONS			LIMITS			
SYMBOL	PARAMETER			Temp =	-40°C to +85°C		UNIT	
				MIN	TYP ¹	MAX		
V _{IK}	Input clamp voltage	$V_{CC} = 2.7 \text{ V}; \text{ I}_{IK} = -18 \text{ mA}$			-0.85	-1.2	V	
V _{OH}	High-level output voltage	$V_{CC} = 3.0 \text{ V}; I_{OH} = -12 \text{ mA}$		2.0				
V _{OL}	Low-level output voltage	V _{CC} = 3.0 V; I _{OL} = 12 mA				0.8	V	
V _{RST}	Power-up output Low voltage ⁵	V_{CC} = 3.6 V; I _O = 1 mA; V _I = GND or V _{CC}	C		0.1	0.55	V	
		V_{CC} = 3.6 V; V_{I} = V_{CC} or GND	Control pins		0.1	±1		
		$V_{CC} = 0 \text{ or } 3.6 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$			0.4	10		
łı	Input leakage current	$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = V_{CC}$	Data nina4		0.1	1	μA	
		$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 0 \text{ V}$	Data pins ⁴		-0.4	-5		
I _{OFF}	Output off current	$V_{CC} = 0$ V; V _I or V _O = 0 to 4.5 V			0.1	±100	μΑ	
		V _{CC} = 3 V; V ₁ = 0.8 V		75	135			
I _{HOLD}	Bus Hold current D inputs ⁷	V _{CC} = 3 V; V _I = 2.0 V		-75	-135		μA	
		$V_{CC} = 0 V \text{ to } 3.6 V; V_{CC} = 3.6 V$		±500				
I _{EX}	Current into an output in the High state when $V_O > V_{CC}$	$V_{O} = 5.5 \text{ V}; V_{CC} = 3.0 \text{ V}$			50	125	μA	
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2$ V; $V_O = 0.5$ V to V_{CC} ; $V_I = GN$ OE/OE = Don't care	D or V _{CC} ;		1	±100	μΑ	
I _{OZH}	3-State output High current	V_{CC} = 3.6 V; V_{O} = 3.0 V; V_{I} = V_{IH} or V_{IL}			0.5	5		
I _{OZL}	3-State output Low current	$V_{CC} = 3.6 \text{ V}; V_{O} = 0.5 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL}$			0.5	-5	μA	
I _{CCH}		V_{CC} = 3.6 V; Outputs High, V_{I} = GND or V_{CC} , I_{O} = 0			0.07	0.12		
I _{CCL}	Quiescent supply current	V_{CC} = 3.6 V; Outputs Low, V_{I} = GND or V_{CC} , I_{O} = 0			4	6	mA	
I _{CCZ}	1	V_{CC} = 3.6 V; Outputs Disabled; V_I = GND or V_{CC} , I_O = 0 ⁶			0.07	0.12		
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 3 V to 3.6 V; One input at V _{CC} -0.6 Other inputs at V _{CC} or GND	5 V,		0.1	0.2	mA	

NOTES:

1. All typical values are at $V_{CC} = 3.3 \text{ V}$ and $T_{amb} = 25^{\circ}\text{C}$. 2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND

3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10 msec. From V_{CC} = 1.2 V to V_{CC} = 3.3 V \pm 0.3 V a transition time of 100 μ sec is permitted. This parameter is valid for T_{amb} = 25°C only. 4. Unused pins at V_{CC} or GND.

5. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.

6. I_{CCZ} is measured with outputs pulled to V_{CC} or GND. 7. This is the bus hold overdrive current required to force the input to the opposite logic state.

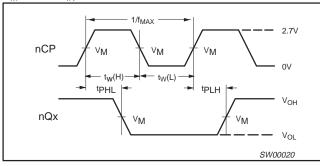
AC CHARACTERISTICS

GND = 0 V; t_R = t_F = 2.5 ns; C_L = 50 pF; R_L = 500 Ω ; T_{amb} = -40°C to +85°C.

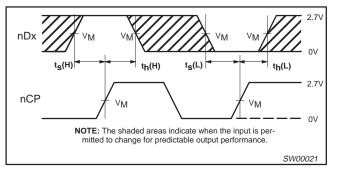
				LI	MITS		
SYMBOL	PARAMETER	WAVEFORM V_{CC} = 3.3 V ±0.3 V V_{CC} = 2.7 V		V _{CC} = 3.3 V ±0.3 V		V _{CC} = 2.7 V	UNIT
			MIN	TYP ¹	MAX	MAX	
f _{max}	Maximum clock frequency	1	150				MHz
t _{PLH} t _{PHL}	Propagation delay nCP to nQx	1	1.5 1.5	3.0 3.0	5.3 4.9	6.2 5.1	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	3 4	1.5 1.5	3.5 3.2	5.6 4.9	6.9 6.0	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	3 4	1.5 1.5	3.5 3.2	5.4 5.0	5.7 5.1	ns

NOTE:

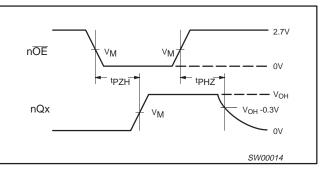
1. All typical values are at $V_{CC} = 3.3V$ and $T_{amb} = 25^{\circ}C$.


AC SETUP REQUIREMENTS

GND = 0 V; $t_R = t_F = 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$; $R_L = 500 \Omega$; $T_{amb} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$.

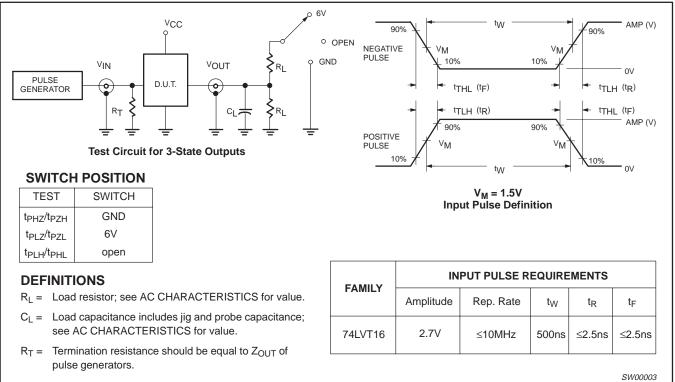

			LIMITS			
SYMBOL	PARAMETER	WAVEFORM	V _{CC} = 3.3	V ±0.3 V	$V_{CC} = 2.7 V$	UNIT
			MIN	TYP	MIN	
t _S (H) t _S (L)	Setup time nDx to nCP	2	2.5 2.5	0.7 0.7	2.5 2.5	ns
t _h (H) t _h (L)	Hold time nDx to nCP	2	0.5 0.5	0 0	0 0	ns
t _W (H) tw(L)	nCP pulse width High or Low	1	1.5 3.0	0.6 1.6	1.5 3.0	ns

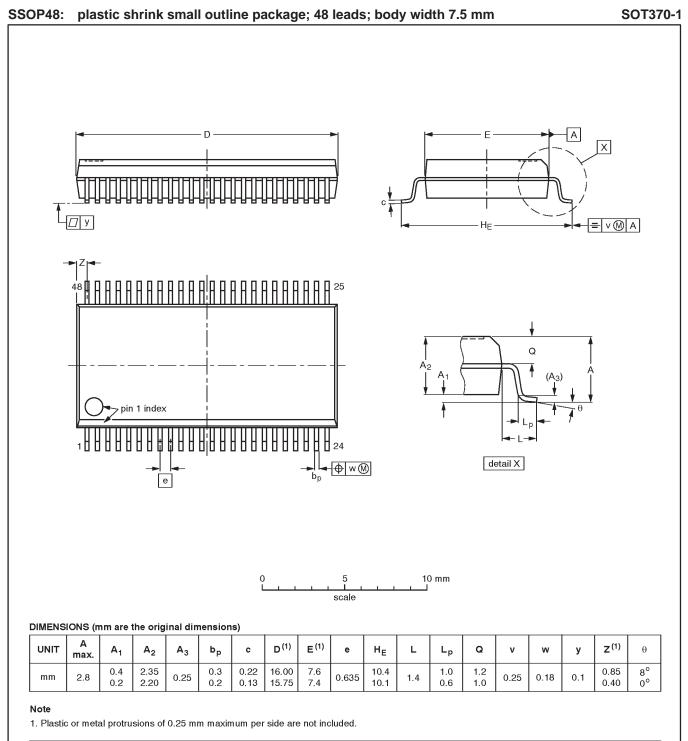
AC WAVEFORMS


 V_{M} = 1.5 V, V_{IN} = GND to 3.0 V



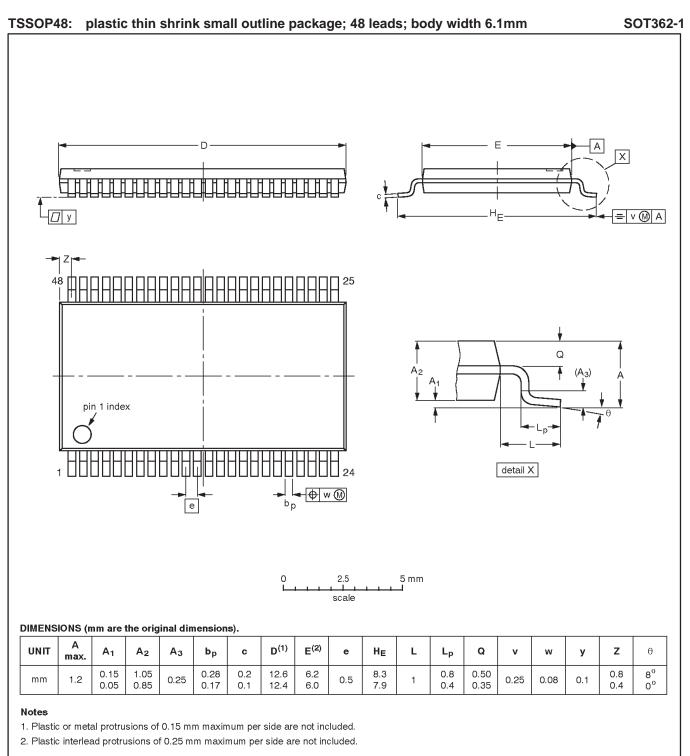
Waveform 2. Data Setup and Hold Times


Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level


Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

74LVT162374

TEST CIRCUIT AND WAVEFORMS



74LVT162374

OUTLINE		REFERENCES				ISSUE DATE	
VERSION	IEC	IEC JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT370-1		MO-118AA				-93-11-02 95-02-04	

74LVT162374

VERSION IEC JEDEC EIAJ PROJECTION	OU	TLINE		REFER	ENCES		EUROPEAN	ISSUE DATE
	VEF	VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT362-1 MO-153ED 95-02-10	SO.	T362-1		MO-153ED				- 93-02-03- 95-02-10

74LVT162374

NOTES

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1999 All rights reserved. Printed in U.S.A.

Date of release: 09-99

Document order number:

9397 750 06508

Let's make things better.

