DATA SHEET

74ABT16260/74ABTH16260 12-bit to 24-bit multiplexed D-type latches (3-State)

PHILIPS

FEATURES

- ESD protection exceeds 2000V per Mil-Std-883C, Method 3015; exceeds 200 V using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$).
- Latch-up performance exceeds 500mA per JEDEC Standard JESD-17.
- Distributed V_{CC} and GND pin configuration minimizes high-speed switching noise.
- Flow-through architecture optimizes PCB layout.
- High-drive outputs ($-32 \mathrm{~mA} \mathrm{I}_{\mathrm{OH}}, 64 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$).
- 74ABTH16260 incorporates bus-hold inputs which eliminate the need for external pull-up resistors.
- Package options:
- 56-pin plastic Shrink Small-Outline Package (SSOP)
- 56-pin plastic Thin Shrink Small-Outline Package (TSSOP)

DESCRIPTION

The 74ABT16260/74ABTH16260 is a 12 -bit to 24 -bit multiplexed D-type latch used in applications where two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor or bus-interface applications. This device is alto useful in memory-interleaving applications.

Three 12-bit I/O ports (A1-A12, 1B1-1B12, and 2B1-2B12) are available for address and/or data transfer. The output enable (OE1B, $\overline{O E} 2 \mathrm{~B}$, and $\overline{O E A}$) inputs control the bus transceiver functions. The OE1B and OE2B control signals also allow bank control in the A to B direction

Address and/or data information can be stored using the internal storage latches. The latch enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch enable input is high, the latch is transparent. When the latch enable input goes low, the data present at the inputs is latched and remains latched until the latch enable input is returned high.

To ensure the high-impedance state during power-up or power-down, $\overline{O E}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current sinking capability of the driver.

The 74ABTH incorporates the bus hold feature. The 74ABT does not include bus hold feature. Both parts are available in 56 -pin SSOP and TSSOP.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathbf{T}_{\text {amb }}=\mathbf{2 5} \mathbf{C} ; \mathbf{G N D}=\mathbf{0 V}$	TYPICAL	UNIT
$\mathrm{t}_{\text {PLH }}$	Propagation delay	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2.8	ns
$\mathrm{t}_{\text {PHL }}$	nAx to nBx nBx to nAx	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	2.5	n
C_{IN}	Input capacitance	$\mathrm{V}_{\text {I/ }}=0 \mathrm{~V}$ or 5.0 V	4	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output capacitance	Outputs disabled	6	pF
$\mathrm{I}_{\mathrm{CCZ}}$	Total supply current		100	$\mu \mathrm{~A}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 ABT16260 DL	BT16260 DL	SOT371-1
56-Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT16260} \mathrm{DGG}$	BT16260 DGG	SOT364-1
56-Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABTH16260} \mathrm{DL}$	BH16260 DL	SOT371-1
56-Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABTH16260} \mathrm{DGG}$	BH16260 DGG	SOT364-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
$8,9,10,12,13,14,15,16,17,19,20,21$	An	Data inputs/outputs (A)
$23,24,26,31,33,34,36,37,38,40,41,42$	1 Bn	Data inputs/outputs (B1)
$6,5,3,54,52,51,49,48,47,45,44,43$	2 Bn	Data inputs/outputs (B2)
$1,29,56$	$\overline{\text { OEA, OE1B }}$, OE2B	Output enable input (active low)
$2,27,30,55$	LE1B, LE2B, LEA1B, LEA2B	Latch enable inputs

12-bit to 24-bit multiplexed D-type latches (3-State)

PIN CONFIGURATION

FUNCTION TABLES
B to $A(\overline{O E B}=H)$

INPUTS						
1B	2B	SEL	LE1B	LE2B	OEA	OUTPUT
H	X	H	H	X	L	H
L	X	H	H	X	L	L
X	X	H	L	X	L	A0
X	H	L	X	H	L	H
X	L	L	X	H	L	L
X	X	L	X	L	L	AO
X	X	X	X	X	H	Z

A to B $(O E A=H)$

INPUTS					OUTPUT	
A	LEA1B	LEA2B	OE1B	OE2B	1B	2B
H	H	H	L	L	H	H
L	H	H	L	L	L	L
H	H	L	L	L	H	2B0
L	H	L	L	L	L	2B0
H	L	H	L	L	$1 B 0$	H
L	L	H	L	L	1 B0	L
X	L	L	L	L	1 B0	2B0
X	X	X	H	H	Z	Z
X	X	X	L	H	Active	Z
X	X	X	H	L	Z	Active
X	X	X	L	L	Active	Active

12-bit to 24-bit multiplexed D-type latches (3-State)

LOGIC DIAGRAM (POSITIVE LOGIC)

12-bit to 24-bit multiplexed D-type latches (3-State)

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise specified) ${ }^{1}$

SYMBOL	PARAMETER	CONDITIONS	LIMITS		UNIT
				MIN	
V_{CC}	Supply voltage range		-0.5	7	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage range	see Note 2	-0.5	7	V
$\mathrm{~V}_{\mathrm{O}}$	Voltage range applied to any output in the high state or power-off state		-0.5	5.5	V
I_{O}	Current into any output in the low state			128	mA
I_{IK}	Input clamp current	$\mathrm{V}_{\mathrm{I}}<0$		-18	mA
I_{OK}	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
	Maximum power dissipation at $\mathrm{T}_{\text {amb }}=55^{\circ} \mathrm{C}$ (in still air)	see Note 3		1.4	W
$\mathrm{~T}_{\text {stg }}$	Storage temperature range		-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils.

RECOMMENDED OPERATING CONDITIONS ${ }^{1}$

SYMBOL	PARAMETER		LIMITS		UNIT
			MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	V
V_{IH}	High-level input voltage		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
V_{1}	Input voltage		0	V_{CC}	V
IOH	High-level output current			-32	mA
l OL	Low-level output current			64	mA
$\Delta \mathrm{t} \Delta / \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10	ns / V
$\Delta t \Delta / V_{\text {CC }}$	Power-up ramp rate		200		$\mu \mathrm{s} / \mathrm{V}$
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature		-40	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. Unused or floating inputs must be held high or low.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS					UNIT
				$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
				Min	Typ	Max	Min	Max	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$			-0.8	-1.2		-1.2	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		2.5	2.9		2.5		V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		3.0	3.4		3.0		V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		2.0	2.4		2.0		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{IOL}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}			0.42	0.55		0.55	V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	Control pins		± 0.01	± 1		± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	Data pins			± 3		± 5	$\mu \mathrm{A}$
Imold	Bus Hold current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$	A or B ports	75			75		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$		-75			-75		
		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V} ; \mathrm{V}_{1}=0$ to 5.5 V		± 500			± 500		
IOFF	Power-off leakage current	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{1} \leq 4.5 \mathrm{~V}$			± 5.0	± 100		± 100	$\mu \mathrm{A}$
IPu/lpd	Power-up/down 3-State output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$			± 60	± 200		± 200	$\mu \mathrm{A}$
IozH	3-State output High current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}			1.0	10		10	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OZL }}$	3-State output Low current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}			-1.0	-10		-10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CEX }}$	Output high leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}				50		50	$\mu \mathrm{A}$
lo	Output current ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-225	-50	-225	mA
$I_{\text {cc }}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=$ GND or V_{CC}			0.2	1.5		1.5	mA
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}			8	19		19	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; Outputs 3-State; } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$			0.1	1.0		1.0	
$\Delta^{\text {l }}$ c	Additional supply current per input pin ${ }^{2}$	Outputs enabled, one input at 3.4 V , other inputs at V_{CC} or GND ; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			0.1	1.5		1.5	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
3. This is the bus hold minimum overdrive current required to force the input to the opposite logic state.

12-bit to 24-bit multiplexed D-type latches (3-State)

AC ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		UNIT
	FROM (INPUT)	TO (OUTPUT)	MIN	TYP	MAX	MIN	MAX	
tpLH	A or B	B or A	1	2.8	4.8	1	5.6	ns
tphL			1	2.5	5	1	5.9	ns
tplh	LE	A or B	1.1	3.2	4.9	1.1	5.8	ns
tphL			1.1	3.2	4.9	1.1	5.3	ns
$\mathrm{t}_{\text {PLH }}$	SEL (B1)	A	1.3	3.2	4.6	1.3	5.3	ns
	SEL (B2)	A	1.1	2.8	4.9	1.1	6	ns
$\mathrm{t}_{\text {PHL }}$	SEL (B1)	A	1.5	3.0	4.4	1.5	4.4	ns
	SEL (B2)	A	1.6	2.6	5.1	1.6	5.9	ns
$\mathrm{t}_{\text {PZH }}$	OE	A or B	1	2.9	4.7	1	5.7	ns
$\mathrm{t}_{\text {PZL }}$			1.6	2.2	5.1	1.6	5.8	ns
tphz	OE	A or B	2.2	4.1	5.4	2.2	6.4	ns
tpLz			1.3	3.2	4.4	1.3	4.8	ns

AC SETUP CHARACTERISTICS

Over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		UNIT
		MIN	MAX	MIN	MAX	
t_{w}	Pulse duration, LE1B, LE2B, LEA1B, or LEA2B high	3.3		3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before LE1B, LE2B, LEA1B, or LEA2B \downarrow	1.5		1.5		ns
t_{n}	Hold time, data after LE1B, LE2B, LEA1B, or LEA2B \downarrow	1		1		ns

12-bit to 24-bit multiplexed D-type latches (3-State)

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ for all waveforms
The outputs are measured one at a time with one transition per measurement.

Figure 1. Pulse duration

All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

Figure 2. Propagation delay times; inverting and non-inverting outputs

Figure 3. Setup and hold times

Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

Figure 4. Enable and disable times;
low- and high-level enabling

TEST LOAD CIRCUIT

Figure 5. Test load circuit

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{z}^{(1)}$	$\boldsymbol{\theta}$
mm	2.8	0.4	2.35	0.25	0.3	0.22	18.55	7.6	0.635	10.4	1.4	1.0	1.2	0.25	0.18	0.1	0.85	8°
0.20	0.2	0.2	0.13	18.30	7.4	0.40	10.1	1.4	0.6	0°								

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT371-1		MO-118AB			$-93-11-02$	

detail X
MSA40O

Dimensions in mm.

NOTES

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

All rights reserved. Printed in U.S.A.
print code
Document order number:

Date of release: 05-96
9397-750-03339

PHILIPS

