INTEGRATED CIRCUITS

DATA SHEET

74ABT16841A 74ABTH16841A

20-bit bus interface latch (3-State)

Product specification Supersedes data of 1995 Sep 28 IC23 Data Handbook

Philips Semiconductors Product specification

20-bit bus interface latch (3-State)

74ABT16841A 74ABTH16841A

FEATURES

- High speed parallel latches
- Live insertion/extraction permitted
- Extra data width for wide address/data paths or buses carrying parity
- Power-up 3-State
- 74ABTH16841A incorporates bus-hold data inputs which eliminate the need for external pull-up resistors to hold unused inputs
- Power-up reset
- Ideal where high speed, light loading, or increased fan-in are required with MOS microprocessors
- Output capability: +64mA/–32mA
- Latch-up protection exceeds 500mA per Jedec Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

DESCRIPTION

The 74ABT16841A Bus interface latch is designed to provide extra data width for wider data/address paths of buses carrying parity.

The 74ABT16841A consists of two sets of ten D-type latches with 3-State outputs. The flip-flops appear transparent to the data when Latch Enable (nLE) is High. This allows asynchronous operation, as the output transition follows the data in transition. On the nLE High-to-Low transition, the data that meets the setup and hold time is latched.

Data appears on the bus when the Output Enable ($n\overline{OE}$) is Low. When $n\overline{OE}$ is High the output is in the High-impedance state.

Two options are available, 74ABT16841A which does not have the bus-hold feature and 74ABTH16841A which incorporates the bus-hold feature.

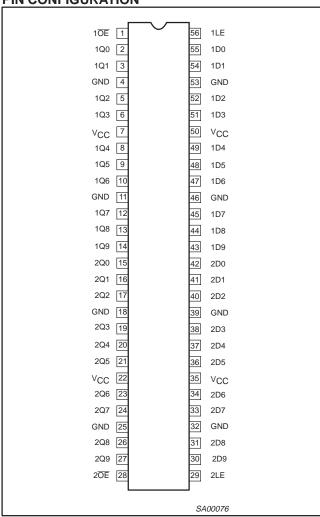
QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay nDx to nQx	$C_L = 50pF; V_{CC} = 5V$	3.1 2.2	ns
C _{IN}	Input capacitance	$V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output capacitance	$V_O = 0V$ or V_{CC} ; 3-State	7	pF
I _{CCZ}	Quicegent gunnly gurrent	Outputs disabled; V _{CC} = 5.5V	500	μΑ
I _{CCL}	Quiescent supply current	Outputs LOW; $V_{CC} = 5.5V$	10	mA

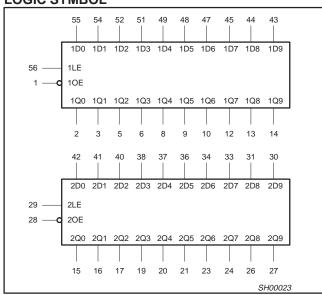
ORDERING INFORMATION

ONDERMINO IN ORMINATION				
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic SSOP Type III	−40°C to +85°C	74ABT16841A DL	BT16841A DL	SOT371-1
56-Pin Plastic TSSOP Type II	−40°C to +85°C	74ABT16841A DGG	BT16841A DGG	SOT364-1
56-Pin Plastic SSOP Type III	−40°C to +85°C	74ABTH16841A DL	BH16841A DL	SOT371-1
56-Pin Plastic TSSOP Type II	−40°C to +85°C	74ABTH16841A DGG	BH16841A DGG	SOT364-1

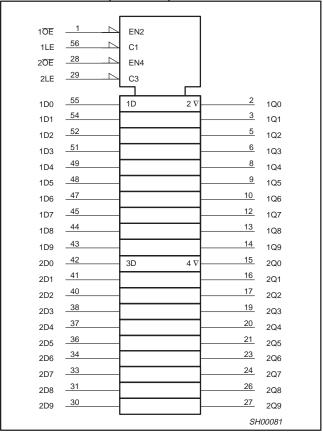
PIN DESCRIPTION


PIN NUMBER	SYMBOL	FUNCTION
55, 54, 52, 51, 49, 48, 47, 45, 44, 43 42, 41, 40, 38, 37, 36, 34, 33, 31, 30	1D0 – 1D9 2D0 – 2D9	Data inputs
2, 3, 5, 6, 8, 9, 10, 12, 13, 14 15, 16, 17, 19, 20, 21, 23, 24, 26, 27	1Q0 – 1Q9 2Q0 – 2Q9	Data outputs
1, 28	1 0E , 2 0E	Output enable inputs (active-Low)
56, 29	1LE, 2LE	Latch enable inputs (active rising edge)
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V _{CC}	Positive supply voltage

Philips Semiconductors Product specification


20-bit bus interface latch (3-State)

74ABT16841A 74ABTH16841A


PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

	INPUTS	3	OUTPUTS	ODED ATING MODE		
nOE	nLE	nDx	nQ0 – nQ9	OPERATING MODE		
L	H	LΗ	L H	Transparent		
L	\rightarrow	l h	L H	Latched		
Н	Х	Х	Z	High impedance		
L	L	Х	NC	Hold		

H = High voltage level

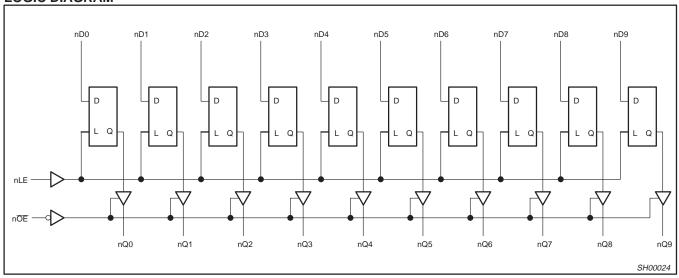
h = High voltage level one set-up time prior to the High-to-Low LE transition

L = Low voltage level

= Low voltage level one set-up time prior to the High-to-Low LE

↓ = High-to-Low LE transition

NC= No change


X = Don't care

Z = High impedance "off" state

20-bit bus interface latch (3-State)

74ABT16841A 74ABTH16841A

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS1, 2

SYMBOL	PARAMETER	PARAMETER CONDITIONS		UNIT
V _{CC}	DC supply voltage		−0.5 to +7.0	V
I _{IK}	DC input diode current	V _I < 0	-18	mA
VI	DC input voltage ³		−1.2 to +7.0	V
l _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +5.5	V
	DC author authors	Output in Low state	128	A
I _{OUT} DC outp	DC output current	Output in High state		mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

- Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
 device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
 absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
- 3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWIBOL	PARAMETER	Min	Max	UNIT
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
I _{OH}	High-level output current		-32	mA
I _{OL}	Low-level output current		64	mA
Δt/Δν	Input transition rise or fall rate	0	5	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

1998 Feb 27 4

20-bit bus interface latch (3-State)

74ABT16841A 74ABTH16841A

DC ELECTRICAL CHARACTERISTICS

					LIMITS					
SYMBOL	PARAMETER	TEST CONDITIONS		T _{ai}	_{nb} = +25	5°C	T _{amb} = -40°C to +85°C		UNIT	
		M					Min	Max		
V _{IK}	Input clamp voltage	V _{CC} = 4.5V; I _{IK} = -18mA			-0.9	-1.2		-1.2	V	
		$V_{CC} = 4.5V; I_{OH} = -3mA; V_{I} = V_{IL} o$	r V _{IH}	2.5	2.9		2.5		V	
V_{OH}	High-level output voltage	$V_{CC} = 5.0V; I_{OH} = -3mA; V_I = V_{IL} o$	r V _{IH}	3.0	3.4		3.0		V	
		$V_{CC} = 4.5V; I_{OH} = -32mA; V_I = V_{IL}$	or V _{IH}	2.0	2.4		2.0		V	
V _{OL}	Low-level output voltage	$V_{CC} = 4.5V; I_{OL} = 64mA; V_{I} = V_{IL} c$	r V _{IH}		0.42	0.55		0.55	V	
V _{RST}	Power-up output voltage ³	$V_{CC} = 5.5V; I_{O} = 1mA; V_{I} = GND o$	r V _{CC}		0.13	0.55		0.55	V	
I _I	Input leakage current 74ABT16841A	$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND			±0.01	±1		±1.0	μА	
		$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND	Control pins		±0.01	±1		±1	μΑ	
I_{\parallel}	Input leakage current 74ABTH16841A	$V_{CC} = 5.5V; V_{I} = V_{CC}$	Data pins ⁵		0.01	1		1	μА	
	7-4705111100-4177	$V_{CC} = 5.5V; V_I = 0$	Data pins		-2	-3		-5	μΑ	
	5 1111 11 16	$V_{CC} = 4.5V; V_I = 0.8V$		35			35			
I_{HOLD}	Bus Hold current inputs ⁶ 74ABTH16841A	$V_{CC} = 4.5V; V_I = 2.0V$		-75			-75		μΑ	
		$V_{CC} = 5.5V; V_I = 0 \text{ to } 5.5V$		±800						
I _{OFF}	Power-off leakage current	$V_{CC} = 0.0V; V_{O} \text{ or } V_{I} \le 4.5V$			±5.0	±100		±100	μΑ	
I _{PU/PD}	Power-up/down 3-State output current ⁴	V_{CC} = 2.1V; V_O = 0.5V; V_I = GND (V_{OE} = Don't care	or V _{CC} ;		±5.0	±50		±50	μА	
l _{ozh}	3-State output High current	$V_{CC} = 5.5V; V_{O} = 2.7V; V_{I} = V_{IL} \text{ or }$	V _{IH}		5.0	10		10	μΑ	
l _{OZL}	3-State output Low current	$V_{CC} = 5.5V; V_O = 0.5V; V_I = V_{IL} \text{ or }$	V _{IH}		-5.0	-10		-10	μΑ	
I _{CEX}	Output High leakage current	$V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GND$	or V _{CC}		5.0	50		50	μΑ	
ΙO	Output current ¹	$V_{CC} = 5.5V; V_{O} = 2.5V$		-50	-70	-180	-50	-180	mA	
I _{CCH}		$V_{CC} = 5.5V$; Outputs High, $V_I = GN$	V_{CC} = 5.5V; Outputs High, V_I = GND or V_{CC}		0.5	1		1	mA	
I _{CCL}	Quiescent supply current	$V_{CC} = 5.5V$; Outputs Low, $V_I = GN$	$V_{CC} = 5.5V$; Outputs Low, $V_I = GND$ or V_{CC}		10	19		19	mA	
I _{CCZ}		$V_{CC} = 5.5V$; Outputs 3-State; $V_I = 0$	GND or V _{CC}		0.5	1		1	mA	
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 5.5V; one input at 3.4V, other V_{CC} or GND	er inputs at		0.2	1		1	mA	

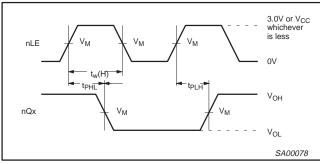
NOTES:

- 1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

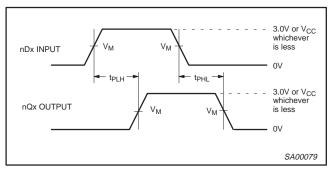
- Not more than one dupot should be tested at a time, and the duration of the test should not exceed one second.
 This is the increase in supply current for each input at 3.4V.
 For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
 This parameter is valid for any V_{CC} between 0V and 2.1V with a transition time of up to 10msec. From V_{CC} = 2.1V to V_{CC} = 5V ± 10% a transition time of up to 100µsec is permitted.
 Unused pins at V_{CC} or GND.
- 6. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS GND = 0V, t_R = t_F = 2.5ns, C_L = 50pF, R_L = 500 Ω

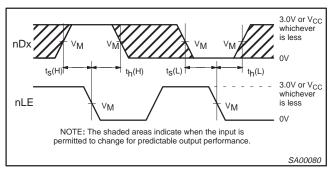
			LIMITS					
SYMBOL	PARAMETER	WAVEFORM	T _{amb} = +25°C V _{CC} = +5.0V			T _{amb} = -40 V _{CC} = +5	UNIT	
			MIN	TYP	MAX	MIN	MAX]
t _{PLH} t _{PHL}	Propagation delay nDx to nQx	2	1.1 1.5	3.1 2.2	4.1 3.1	1.1 1.5	4.9 3.6	ns
t _{PLH} t _{PHL}	Propagation delay nLE to nQx	1	1.5 1.0	2.5 2.1	3.3 2.8	1.5 1.0	3.7 3.1	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	4 5	1.2 1.2	2.4 2.2	3.2 2.9	1.2 1.2	4.0 3.6	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	4 5	1.8 1.5	3.0 2.5	4.0 3.2	1.8 1.5	4.9 3.7	ns


AC SETUP REQUIREMENTS

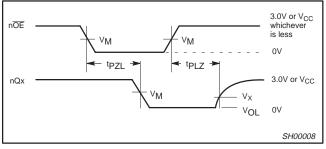
GND = 0V, t_R = t_F = 2.5ns, C_L = 50pF, R_L = 500 Ω


SYMBOL PARAMETER]			
		WAVEFORM			T_{amb} = -40 to +85°C V_{CC} = +5.0V ±0.5V		UNIT
			Min	Тур	Min	Max	
$t_s(H)$ $t_s(L)$	Setup time, High or Low nDx to nLE	3	2.0 1.0	1.0 0.4	2.0 1.0		ns
t _h (H) t _h (L)	Hold time, High or Low nDx to nLE	3	2.0 2.0	-0.3 -0.7	2.0 2.0		ns
t _w (H)	nLE pulse width High	1	2.9	1.9	2.9		ns

AC WAVEFORMS


 $V_{M} = 1.5V, V_{IN} = GND \text{ to } 3.0V$

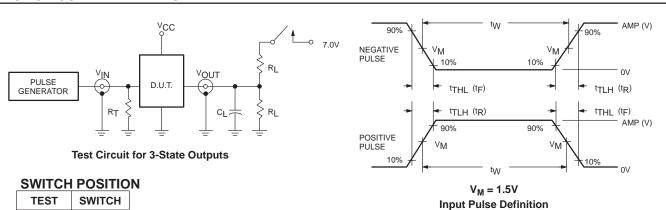
Waveform 1. Propagation Delay, Latch Enable Input to Output, and Enable Pulse Width


Waveform 2. Propagation Delay for Data to Outputs

Waveform 3. Data Setup and Hold Times

Waveform 4. 3–State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level


1998 Feb 27 6

Philips Semiconductors Product specification

20-bit bus interface latch (3-State)

74ABT16841A 74ABTH16841A

TEST CIRCUIT AND WAVEFORM

TEST	SWITCH
t _{PLZ}	closed
t _{PZL}	closed
All other	open

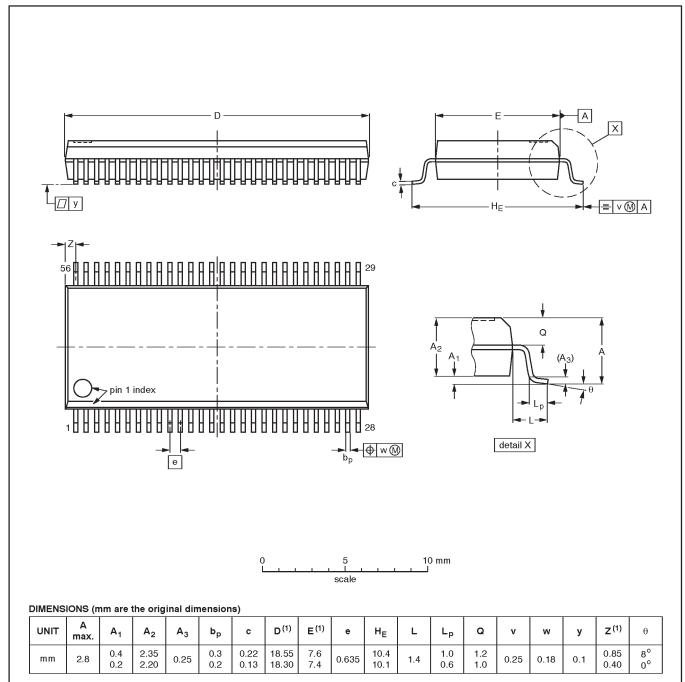
DEFINITIONS

 R_L = Load resistor; see AC CHARACTERISTICS for value.

 C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

Termination resistance should be equal to $Z_{\mbox{\scriptsize OUT}}$ of pulse generators.

FAMILY	INPUT PULSE REQUIREMENTS							
FAMILI	Amplitude	Rep. Rate	t _W	t _R	t _F			
74ABT/H16	3.0V	1MHz	500ns	2.5ns	2.5ns			

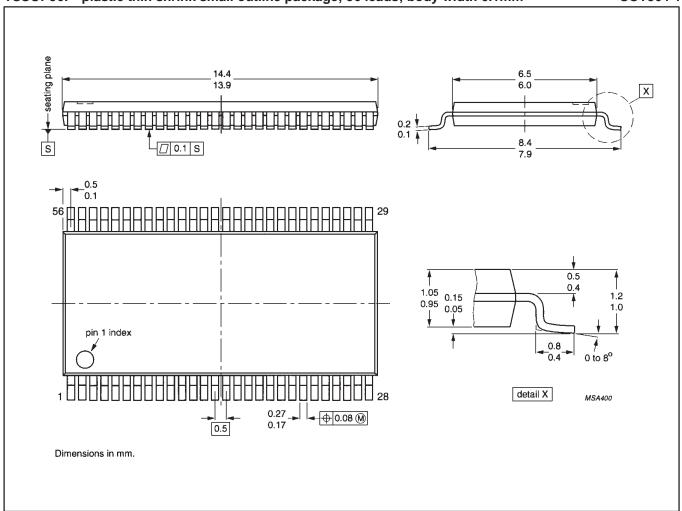

SA00018

20-bit bus interface latch (3-State)

74ABT16841A 74ABTH16841A

SSOP56: plastic shrink small outline package; 56 leads; body width 7.5 mm

SOT371-1


Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFERENCES			EUROPEAN ISSUE DAT		
VERSION	IEC	IEC JEDEC EIAJ PROJEC	PROJECTION	1550E DATE			
SOT371-1		MO-118AB				-93-11-02- 95-02-04	

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1mm

Philips Semiconductors Product specification

20-bit bus interface latch (3-State)

74ABT16841A 74ABTH16841A

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-03506

Let's make things better.

Philips Semiconductors

