INTEGRATED CIRCUITS

DATA SHEET

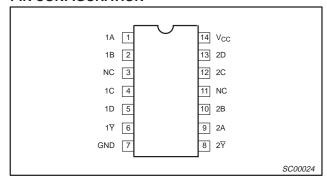
74ALS20ADual 4-Input NAND gate

Product specification

1996 Jul 01

IC05 Data Handbook

Dual 4-input NAND gate

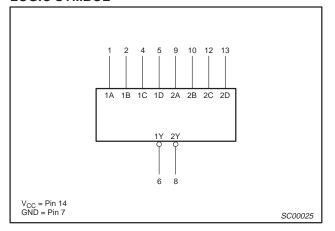

74ALS20A

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74ALS20A	4.5ns	0.65mA

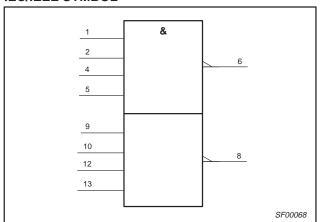
ORDERING INFORMATION

	ORDER CODE		
DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V $\pm 10\%$, T_{amb} = 0°C to ± 70 °C	DRAWING NUMBER	
14-pin plastic DIP	74ALS20AN	SOT27-1	
14-pin plastic SO	74ALS20AD	SOT108-1	

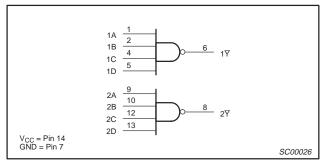
PIN CONFIGURATION



INPUT AND OUTPUT LOADING AND FAN-OUT TABLE


PINS	DESCRIPTION	74ALS (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW		
nA, nB, nC, nD	Data inputs	1.0/1.0	20μA/0.1mA		
nΨ	Data outputs	20/80	0.4mA/8mA		

NOTE: One (1.0) ALS unit load is defined as: 20μA in the High state and 0.1mA in the Low state.


LOGIC SYMBOL

IEC/IEEE SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

	INP	JTS		OUTPUT
nA	nB	nC	nD	nΫ
Н	Н	Н	Н	L
L	Х	Х	Х	Н
Х	L	Х	Х	Н
Х	Х	L	Х	Н
Х	Х	Х	L	Н

H = High voltage level
L = Low voltage level
X = Don't care

Philips Semiconductors Product specification

Dual 4-input NAND gate

74ALS20A

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	−30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	−0.5 to V _{CC}	V
I _{OUT}	Current applied to output in Low output state	16	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UNIT		
STWIBUL	PARAMETER	MIN	NOM	MAX	UNII
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	High-level input voltage	2.0			V
V _{IL}	Low-level input voltage			0.8	V
I _{lk}	Input clamp current			-18	mA
I _{OH}	High-level output current			-0.4	mA
I _{OL}	Low-level output current			8	mA
T _{amb}	Operating free-air temperature range	0		+70	°C

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

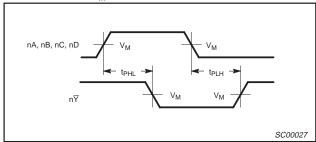
SYMBOL	PARAMETER		TEST CONDITIONS	21		UNIT		
STWIBOL	PARAMETER		TEST CONDITIONS	5 .	MIN	TYP ²	MAX	UNII
V _{OH}	High-level output voltage		$V_{CC}\pm 10\%$, $V_{IL}=MAX$, $V_{IH}=MIN$	V _{CC} - 2			V	
V	Low-level output voltage		V _{CC} = MIN, V _{IL} = MAX,	I _{OL} = 4mA		0.25	0.40	V
V _{OL}	Low-level output voltage		V _{IH} = MIN	I _{OL} = 8mA		0.35	0.50	V
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$		-0.73	-1.5	V	
l _l	Input current at maximum input v	oltage	$V_{CC} = MAX, V_I = 7.0V$			0.1	mA	
I _{IH}	High-level input current		$V_{CC} = MAX, V_I = 2.7V$			20	μΑ	
I _{IL}	Low-level input current		$V_{CC} = MAX, V_I = 0.5V$			-0.1	mA	
I _O	Output current ³		$V_{CC} = MAX, V_O = 2.25V$	-30		-112	mA	
l	Cumply current (total)		V - MAY	$V_I = 0V$		0.3	0.4	mA
Icc	Supply current (total)	I _{CCL}	V _{CC} = MAX	$V_{I} = 4.5V$		1.0	1.5	mA

1996 Jul 01 3

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
 All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
 The output conditions have been chosen to produce a current that closely approximate one half of the true short-circuit output current, I_{OS}.

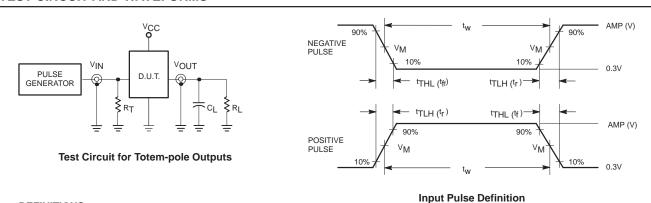
Philips Semiconductors Product specification

Dual 4-input NAND gate


74ALS20A

AC ELECTRICAL CHARACTERISTICS

			LIM		
SYMBOL	PARAMETER	TEST CONDITION	T _{amb} = 0°C V _{CC} = +5. C _L = 50pF,	UNIT	
			MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay nA, nB, nC, nD to $n\overline{Y}$	Waveform 1	2.0 3.0	11.0 10.0	ns


AC WAVEFORMS

For all waveforms, $V_M = 1.3V$.

Waveform 1. Propagation Delay for Data to Output

TEST CIRCUIT AND WAVEFORMS

Family

74ALS

DEFINITIONS:

Load resistor; see AC electrical characteristics for value.

Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.

Termination resistance should be equal to Z_{OUT} of C_L

pulse generators.

INPUT PULSE REQUIREMENTS										
Amplitude	V _M	Rep.Rate	t _w	t _{TLH}	t _{THL}					

500ns

1MHz

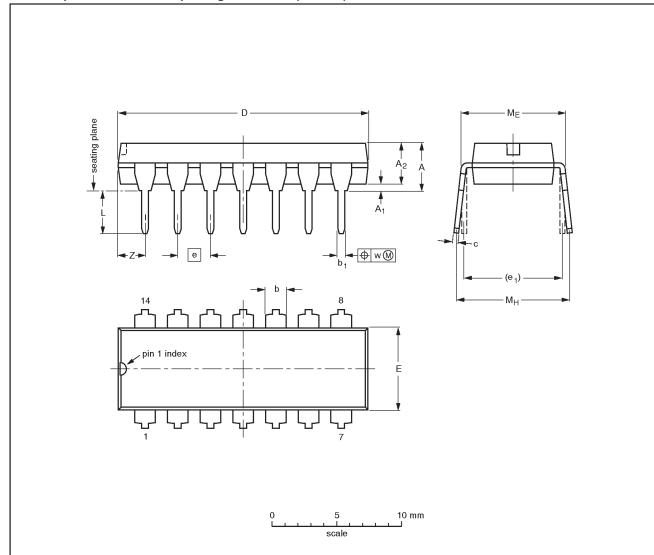
1.3V

3.5V

2.0ns

SC00005

2.0ns


1996 Jul 01 4 Philips Semiconductors Product specification

Dual 4-input NAND gate

74ALS20A

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

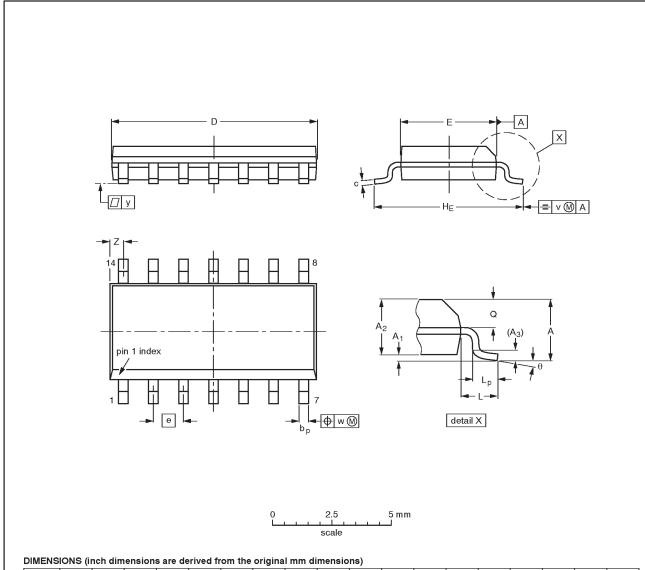
UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001AA				92-11-17 95-03-11	

1996 Jul 01 5


Philips Semiconductors Product specification

Dual 4-input NAND gate

74ALS20A

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

	militation of the final difference and the original finite difference of																	
UNIT	A max.	A ₁	A ₂	A ₃	bр	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.0098 0.0039		0.01		0.0098 0.0075	0.35 0.34	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	ISSUE DATE	
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT108-1	076E06\$	MS-012AB				91-08-13- 95-01-23

1996 Jul 01 6

Philips Semiconductors Product specification

Dual 4-input NAND gate

74ALS20A

DEFINITIONS					
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96

Let's make things better.

Philips Semiconductors

