

74F2373
 Octal transparent latch with 30Ω equivalent output termination (3-State)

FEATURES

- 8-bit transparent latch
- 30 Ohm output termination for driving DRAM
- 3-State outputs glitch free during power-up and power-down
- Common 3-State output register
- Independent register and 3-State buffer operation

DESCRIPTION

The 74F2373 is an octal transparent latch coupled to eight 3-State output devices. The two sections of the device are controlled independently by enable (E) and output enable (OE) control gates.
The 30 Ohm series termination on the outputs reduces over/undershoot, making them ideal for driving DRAM

The data on the D inputs is transferred to the latch outputs when the enable (E) input is high. The latch remains transparent to the data input while E is high, and stores the data that is present one setup time before the high-to-low enable transition.
The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors.
The active low output enable ($\overline{\mathrm{OE} \text {) controls all eight 3-State buffers }}$ independent of the latch operation. When OE is low, latched or transparent data appears at the output.
When $\overline{O E}$ is high, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 2373	4.5 ns	35 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	DRAWING NUMBER
	COMMERCIAL RANGE $\mathrm{v}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
20-pin plastic DIP	N74F2373N	SOT146-1
20-pin plastic SOL	N74F2373D	SOT163-1

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D0 - D7	Data inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
E	Enable input (active high)	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
OE	Output enable inputs (active low)	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
Q0 - Q7	3-State outputs	$150 / 40$	$3.0 \mathrm{~mA} / 3.0 \mathrm{~mA}$

NOTE: One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the high state and 0.6 mA in the low state.

PIN CONFIGURATION

OE 1	20 VCC		
Q0 2	19 Q7		
D0 3	18 D7		
D1 4	17 D 6		
Q1 5	16 Q6		
Q2 6	15 Q5		
D2 7	14 D5		
D3 8	13 D4		
Q3 9	$12 . \mathrm{Q} 4$		
GND 10	11 E		
		SF00250	

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$
SF00251

Octal transparent latch with 30Ω equivalent output termination (3-State)

IEC/IEEE SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			INTERNAL REGISTER	OUTPUTS	OPERATING MODE
$\overline{O E}$	E	Dn		Q0-Q7	
L	H	L	L	L	Enable and read register
L	H	H	H	H	
L	\downarrow	1	L	L	Latch and read register
L	\downarrow	h	H	H	
L	L	X	NC	NC	Hold
H	L	X	NC	Z	Disable outputs
H	H	Dn	Dn	Z	

NOTES:

H = High-voltage level
$\mathrm{h}=$ High state must be present one setup time before the high-to-low enable transition
L = Low-voltage level
I = Low state must be present one setup time before the high-to-low enable transition
$\mathrm{NC}=\quad$ No change
$X=$ Don't care
Z = High impedance "off" state
$\downarrow=$ High-to-low enable transition

Octal transparent latch with 30Ω equivalent output termination (3-State)

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

| SYMBOL | PARAMETER | RATING |
| :--- | :--- | :---: | :---: |
| V_{CC} | Supply voltage | -0.5 to +7.0 |
| $\mathrm{~V}_{\text {IN }}$ | Input voltage | -0.5 to +7.0 |
| $\mathrm{I}_{\text {IN }}$ | Input current | -30 to +5 |
| $\mathrm{~V}_{\text {OUT }}$ | Voltage applied to output in high output state | V |
| $\mathrm{I}_{\text {OUT }}$ | Current applied to output in low output state | -0.5 to V_{CC} |
| $\mathrm{T}_{\text {amb }}$ | Operating free air temperature range | mA |
| $\mathrm{T}_{\text {stg }}$ | Storage temperature range | V |

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{Ik}	Input clamp current			-18	mA
IOH^{\prime}	High-level output current			-3^{*}	mA
$\mathrm{IOL}^{\text {l }}$	Low-level output current			5*	mA
$\mathrm{T}_{\mathrm{amb}}$	Operating free air temperature range	0		+70	${ }^{\circ} \mathrm{C}$

* 12 mA with reduced noise margin

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				MIN	TYP ${ }^{2}$	MAX	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$,	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
		$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\text {IL }}=\mathrm{MAX}$,	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0			V
		$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.0			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=-5 \mathrm{~mA} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.42	0.50	V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.42	0.50	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \hline \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.67		V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.67		V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$			-0.73	-1.2	V
I	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
I_{IH}	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
${ }^{\text {IOZH }}$	Off-state output current, high-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IozL	Off-state output current, low-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$
Ios	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA
ICC	Supply current (total)	$\mathrm{V}_{C C}=\mathrm{MAX}$			35	60	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Octal transparent latch with 30Ω equivalent output termination (3-State)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Dn to Qn	Waveform 2	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{pH}} \\ & \hline \end{aligned}$	Propagation delay E to Qn	Waveform 1	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\text {pZH }} \\ & \mathrm{t}_{\text {pZL }} \end{aligned}$	Output enable time to high or low level	Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.6 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \mathrm{t}_{\mathrm{t}} \end{aligned}$	Output disable time from high or low level	Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, high or low level Dn to E	Waveform 3	$\begin{gathered} 0 \\ 1.0 \end{gathered}$			$\begin{gathered} 0 \\ 1.0 \end{gathered}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, high or low level Dn to E	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	E Pulse width, high	Waveform 1	3.5			4.0		ns

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation delay for enable to output and enable pulse width

Waveform 2. Propagation delay for data to output

Waveform 3. Data setup time and hold times

Waveform 4. 3-State output enable time to high level and output disable time from high level

Octal transparent latch with 30Ω equivalent output termination (3-State)

AC WAVEFORMS (Continued)

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 5. 3-State output enable time to low level and output disable time from low level

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\text { max. }}{A}$	A min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\mathbf{z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	- ¢	$\begin{aligned} & 92-11-17 \\ & 95-05-24 \end{aligned}$

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	θ
mm	2.65	0.30	2.45	0.10	2.25	0.25	0.49	0.36	0.32	13.0	7.6	12.6	7.4	1.27	10.65	10.00	1.4	1.1 0.4
	0.10	0.012	0.096	0.01	0.019	0.013	0.51	0.30	0.050	0.419	0.25	0.25	0.1	0.9				

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		\square (¢)	$\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$

Octal transparent latch with 30Ω equivalent output termination (3-State)

NOTES

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

