

74F299

8-bit universal shift/storage register (3-State)

FEATURES

- Common parallel I/O for reduced pin count
- Additional serial inputs and outputs for expansion
- Four operating modes: Shift left, shift right, load and store
- 3-State outputs for bus-oriented applications

DESCRIPTION

The 74F299 is an 8-bit universal shift/storage register with 3-State outputs. Four modes of operation are possible: Hold (store), shift left, shift right and parallel load. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs are provided for flip-flops Q0 and Q7 to allow easy serial cascading. A separate active-Low Master Reset is used to reset the register.

The 74F299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S 0 and S 1 , as shown in the Function Table. All flip-flop outputs are brought out through 3-State buffers to separate I/O pins that also serve as data inputs in the parallel load mode.
Q0 and Q7 are also brought out on other pins for expansion in serial shifting of longer words.

A Low signal on MR overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of clock are observed.

A High signal on either $\overline{\mathrm{OE}} 0$ or $\overline{\mathrm{OE}} 1$ disables the 3-State buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-State buffers are also disabled by High signals on both S0 and S1 in preparation for a parallel load operation.

PIN CONFIGURATION

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 299	115 MHz	58 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	COMMERCIAL RANGE $\mathbf{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	N74F299N	SOT146-1
20-pin plastic SOL	N74F299D	SOT163-1
20-pin plastic SSOP II	N74F299DB	SOT339-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
DS0	Serial data input for right shift	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
DS7	Serial data input for left shift	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S0, S1	Mode select inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
CP	Clock pulse input (Active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Asynchronous Master Reset input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { OE0, } \bar{O} 1} 1$	Output Enable input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Q0, Q7	Serial outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
I/On	Multiplexed parallel data inputs or	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	3-State parallel outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

[^0]LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS	INPUTS				OPERATING MODE
OEn	MR	S1	S0	CP	
L	L	X	X	X	Asynchronous Reset; Q0-Q7 = Low
L	H	H	H	\uparrow	Parallel load; I/On \rightarrow Qn (I/On outputs disabled)
L	H	L	H	\uparrow	Shift right; DS0 \rightarrow Q0, Q0 \rightarrow Q1, etc.
L	H	H	L	\uparrow	Shift left; DS7 \rightarrow Q7, Q7 \rightarrow Q6, etc.
L	H	L	L	X	Hold
H	X	X	X	X	Outputs in High Z

$H=H i g h ~ v o l t a g e ~ l e v e l ~$
L = Low voltage level
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
I_{IN}	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
Iout	Current applied to output in Low output state	Q0, Q7	40	mA
		I/On	48	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{IK}	Input clamp current				-18	mA
	High-lovel output current	Q0, Q7			-1	mA
	High-level output current	I/On			-3	mA
	Low-lev	Q0, Q7			20	mA
IoL	Low-level output curent	I/On			24	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{\text {NO }}$ TAG			LIMITS			UNIT			
			MIN	TYP NO TAG	MAX							
V_{OH}	High-level output voltage	-0, 07				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7	3.4				V			
		I/On	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4				V			
				$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7		3.3		V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{loL}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$			0.35	0.50	V				
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V		
I_{1}	Input current at maximum input voltage	others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		I/On	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$					1	mA			
I_{IH}	High-level input current	except I/On	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current	S0, S1	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{l}}=0.5 \mathrm{~V}$					-1.2	mA			
		others						-0.6	mA			
$\mathrm{IIH}_{+} \mathrm{l}_{\mathrm{OzH}}$	Off-state output current, High-level voltage applied	I/On only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
IIL + lozL	Off-state output current Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-0.6	mA			
Ios	Short-circuit output current ${ }^{\text {NO }}$ TAG		$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
I_{Cc}	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$				55	60	mA			
		$\mathrm{I}_{\text {CCL }}$					70	90	mA			
		ICCz					65	95	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			MIN	TYP	MAX	MIN	MAX			
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	I/O		Waveform 1	70	100		70		MHz
		Qn			85	115		85		MHz
$\begin{aligned} & \text { tpLH } \\ & \text { tpH } \end{aligned}$	Propagation delay CP to Q0 or Q7		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \hline \mathrm{tpLH}^{\prime} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to I/On		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to Q0 or Q7		Waveform 2	5.5	7.5	9.5	5.5	10.5	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to I/On		Waveform 2	5.5	7.5	10.0	5.5	10.5	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{pZLL}} \\ & \hline \end{aligned}$	Output Enable time Sn, OE to I/On		Waveform 4 Waveform 5	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \text { tphz } \\ & \text { tpLz } \end{aligned}$	Output Disable time Sn , OE to I / On		Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low S0 or S1 to CP	Waveform 3	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low S0 or S1 to CP	Waveform 3	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time, High or Low I/On, DS L or DS $_{\text {R }}$ to CP	Waveform 3	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low I/On, DS $L_{\text {L }}$ or S_{R} to CP	Waveform 3	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	MR Pulse width, Low	Waveform 2	4.5			4.5		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 2	4.0			4.0		ns

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay, Clock Input to Output, Clock Width, and Maximum Clock Frequency

Waveform 3. Setup and Hold Times

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay, and Master Reset to Clock Recovery Time

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$R_{L}=$ Load resistor; see AC electrical characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{T L H}}$	$\mathbf{t}_{\mathbf{T H L}}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	A_{1} min.	A_{2} $\max .$	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\mathbf{z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	- ¢	$\begin{aligned} & 92-11-17 \\ & 95-05-24 \end{aligned}$

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	θ
mm	2.65	0.30	2.45	0.10	2.25	0.25	0.49	0.36	0.32	13.0	7.6	12.6	7.4	1.27	10.65	10.00	1.4	1.1 0.4
	0.10	0.012	0.096	0.01	0.019	0.013	0.51	0.30	0.050	0.419	0.25	0.25	0.1	0.9				

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		\square (¢)	$\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	$\underset{\text { max. }}{\text { A }}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathbf{Z}^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.0 \end{aligned}$	5.4	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.9 \\ & 0.5 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT339-1		MO-150AE		- ¢	$\begin{aligned} & 93-09-08 \\ & 95-02-04 \end{aligned}$

NOTES

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

[^0]: NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High State and 0.6 mA in the Low state.

