DATA SHEET

74F50728
 Synchronizing cascaded dual positive edge-triggered D-type flip-flop

Positive specification
IC15 Data Handbook

PHILIPS

FEATURES

- Metastable immune characteristics
- Output skew less than 1.5 ns
- See 74F5074 for synchronizing dual D-type flip-flop
- See 74F50109 for synchronizing dual J-K positive edge-triggered flip-flop
- See 74F50729 for synchronizing dual dual D-type flip-flop with edge-triggered set and reset
- Industrial temperature range available $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

DESCRIPTION

The 74F50728 is a cascaded dual positive edge-triggered D-type featuring individual data, clock, set and reset inputs; also true and complementary outputs.
Set ($\overline{\mathrm{S}} \mathrm{Dn}$) and reset ($\overline{\mathrm{R} D n}$) are asynchronous active low inputs and operate independently of the clock (CPn) input. They set and reset both flip-flops of a cascaded pair simultaneously. Data must be stable just one setup time prior to the low-to-high transition of the clock for guaranteed propagation delays.

Clock triggering occurs at a voltage level and is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the Dn input may be changed without affecting the levels of the output. Data entering the 74F50728 requires two clock cycles to arrive at the outputs.
The 74F50728 is designed so that the outputs can never display a metastable state due to setup and hold time violations. If setup time and hold time are violated the propagation delays may be extended beyond the specifications but the outputs will not glitch or display a metastable state. Typical metastability parameters for the 74F50728 are: $\tau \cong 135 \mathrm{ps}$ and $\mathrm{T}_{0} \cong 9.8 \times 10^{6} \mathrm{sec}$ where τ represents a function of the rate at which a latch in a metastable state resolves that condition and T_{0} represents a function of the measurement of the propensity of a latch to enter a metastable state.

TYPE	${\text { TYPICAL } \boldsymbol{f}_{\max }}^{\text {TYPICAL SUPPLY }}$	TYPRENT (TOTAL) CURR
74 F 50728	145 MHz	23 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE		PKG DWG \#
	COMMERCIAL RANGE $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \hline \end{gathered}$	INDUSTRIAL RANGE $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \hline \end{gathered}$	
14-pin plastic DIP	N74F50728N	174F50728N	SOT27-1
14-pin plastic SO	N74F50728D	174F50728D	SOT108-1

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/ LOW	LOAD VALUE HIGH/ LOW
D0, D1	Data inputs	$1.0 / 0.417$	$20 \mu \mathrm{~A} / 250 \mu \mathrm{~A}$
CP0, CP1	Clock inputs (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\text { SD0, SD1 }}$	Set inputs (active low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
RD0, $\bar{R} 11$	Reset inputs (active low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
Q0, Q1, $\overline{\text { Q } 0, ~} \bar{Q} 1$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the high state and 0.6 mA in the low state.

Synchronizing cascaded dual positive edge-triggered D-type flip-flop

PIN CONFIGURATION

LOGIC SYMBOL

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$
SF00606

IEC/IEEE SYMBOL

LOGIC DIAGRAM

$$
V_{\mathrm{CC}}=\operatorname{Pin} 14
$$

GND $=$ Pin 7
SF00608

NOTE: Data entering the flip-flop requires two clock cycles to arrive at the output.

SYNCHRONIZING SOLUTIONS

Synchronizing incoming signals to a system clock has proven to be costly, either in terms of time delays or hardware. The reason for this is that in order to synchronize the signals a flip-flop must be used to "capture" the incoming signal. While this is perhaps the only way to synchronize a signal, to this point, there have been problems with this method. Whenever the flop's setup or hold times are violated the flop can enter a metastable state causing the outputs in turn to glitch, oscillate, enter an intermediate state or change state in some abnormal fashion. Any of these conditions could be responsible for causing a system crash. To minimize this risk, flip-flops are often cascaded so that the input signal is captured on the first clock pulse and released on the second clock pulse (see Fig.1). This gives the first flop about one clock period minus the flop delay and minus the second flop's clock-to-Q setup time to resolve any metastable condition. This method greatly reduces the probability of the outputs of the synchronizing device displaying an abnormal state but the trade-off is that one clock cycle is lost to synchronize the incoming data and two separate flip-flops are required to produce the cascaded flop circuit. In order to assist the designer of synchronizing circuits Philips Semiconductors is offering the 74F50728.

Figure 1.
The 50728 consists of two pair of cascaded D-type flip-flops with metastable immune features and is pin compatible with the 74F74. Because the flops are cascaded on a single part the metastability

Synchronizing cascaded dual positive edge-triggered D-type flip-flop
characteristics are greatly improved over using two separate flops that are cascaded. The pin compatibility with the 74F74 allows for plug-in retrofitting of previously designed systems.

Because the probability of failure of the 74F50728 is so remote, the metastability characteristics of the part were empirically determined based on the characteristics of its sister part, the 74F5074. The table below shows the 74F5074 metastability characteristics.
Having determined the T_{0} and τ of the flop, calculating the mean time between failures (MTBF) for the 74F50728 is simple. It is, however, somewhat different than calculating MTBF for a typical part because data requires two clock pulses to transit from the input to the output. Also, in this case a failure is considered of the output beyond the normal propagation delay.

Suppose a designer wants to use the flop for synchronizing asynchronous data that is arriving at 10 MHz (as measured by a frequency counter), and is using a clock frequency of 50 MHz . He simply plugs his number into the equation below:
MTBF $=e^{\left(t^{\prime} / t\right)} / T_{0} f_{C} f_{l}$
In this formula, f_{C} is the frequency of the clock, f_{l} is the average input event frequency, and t^{\prime} is the period of the clock input (20 nanoseconds). In this situation the f_{l} will be twice the data frequency of 20 MHz because input events consist of both of low and high data transitions. From Fig. 2 it is clear that the MTBF is greater than 10^{41} seconds. Using the above formula the actual MTBF is 2.23×10^{42} seconds or about 7×10^{34} years.

TYPICAL VALUES FOR τ AND T_{0} AT VARIOUS $\mathrm{V}_{\mathrm{CC}} S$ AND TEMPERATURES

	$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathbf{C}$	
	τ	T_{0}	τ	$\mathrm{~T}_{0}$	τ	$\mathrm{~T}_{0}$
$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	125 ps	$1.0 \times 10^{9} \mathrm{sec}$	138 ps	$5.4 \times 10^{6} \mathrm{sec}$	160 ps	$1.7 \times 10^{5} \mathrm{sec}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	115 ps	$1.3 \times 10^{10} \mathrm{sec}$	135 ps	$9.8 \times 10^{6} \mathrm{sec}$	167 ps	$3.9 \times 10^{4} \mathrm{sec}$
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	115 ps	$3.4 \times 10^{13} \mathrm{sec}$	132 ps	$5.1 \times 10^{8} \mathrm{sec}$	175 ps	$7.3 \times 10^{4} \mathrm{sec}$

MEAN TIME BETWEEN FAILURES VERSUS DATA FREQUENCY AT VARIOUS CLOCK FREQUENCY

Figure 2.

Synchronizing cascaded dual positive edge-triggered D-type flip-flop

FUNCTION TABLE

INPUTS				INTERNAL REGISTER	OUTPUTS		OPERATING MODE
$\overline{\text { SDn }}$	RDn	CPn	Dn	Q	Qn	Qn	
L	H	X	X	H	H	L	Asynchronous set
H	L	X	X	L	L	H	Asynchronous reset
L	L	X	X	X	H	H	Undetermined*
H	H	\uparrow	h	h	H	L	Load "1"
H	H	\uparrow	I	1	L	H	Load "0"
H	H	L	X	NC	NC	NC	Hold

NOTES:
$\mathrm{H}=$ High voltage level
$h=$ High voltage level one setup time prior to low-to-high clock transition
$\mathrm{L}=$ Low voltage level
I = Low voltage level one setup time prior to low-to-high clock transition
$\mathrm{NC}=$ No change from the previous setup
$X=$ Don't care

* = This setup is unstable and will change when either set of reset return to the high-level
$\uparrow=$ Low-to-high clock transition.
** $=$ Data entering the flip-flop requires two clock cycles to arrive at the output (see logic diagram)

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
I IN	Input current		-30 to +5	mA
V OUT	Voltage applied to output in high output state		-0.5 to V_{CC}	V
IOUT	Current applied to output in low output state		40	mA
$\mathrm{T}_{\mathrm{amb}}$	Operating free air temperature range	Commercial range	0 to +70	${ }^{\circ} \mathrm{C}$
		Industrial range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.4			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{Ik}	Input clamp current				-18	mA
IOH	High-level output current				-3	mA
$\mathrm{IOL}^{\text {l }}$	Low-level output current				20	mA
Tamb	Operating free air temperature range	Commercial range	0		+70	${ }^{\circ} \mathrm{C}$
		Industrial range	-40		+85	${ }^{\circ} \mathrm{C}$

Synchronizing cascaded dual positive edge-triggered D-type flip-flop

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			MIN	TYP ${ }^{2}$	MAX							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \end{aligned}$	$\mathrm{IOH}_{\text {= }} \mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7	3.4				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}= \\ & \mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{loL}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.30	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$			0.30	0.50	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V		
I	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{IH}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current	Dn	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-250	$\mu \mathrm{A}$			
		CPn, SDn, RDn						-20	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$			-60		-150	mA			
ICC	Supply current ${ }^{4}$ (total)		$V_{C C}=$ MAX				23	34	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure I_{CC} with the clock input grounded and all outputs open, then with Q and \bar{Q} outputs high in turn.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	100	145		85		70		ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation delay CPn to Qn or $\overline{\text { Qn }}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHHL}} \end{aligned}$	Propagation delay $\bar{S} D n$ RDn to Qn or $\bar{Q} n$	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\text {sk(0) }}$	Output skew ${ }^{1,2}$	Waveform 4			1.5		1.5		1.5	ns

NOTES TO AC ELECTRICAL CHARACTERISTICS

1. | $\mathrm{t}_{\text {pL }}$ actual $-\mathrm{t}_{\text {PHL }}$ actual | for any one output compare to any other output where N and M are either LH or HL.
2. Skew lines are valid only under same conditions (temperature, V_{CC}, loading, etc.,).

Synchronizing cascaded dual positive edge-triggered D-type flip-flop

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\text {su }}(\mathrm{L}) \end{aligned}$	Setup time, high or low Dn to CPn	Waveform 1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			2.0 2.0		2.0 2.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, high or low Dn to CPn	Waveform 1	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$			1.5 1.5		1.5 1.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CPn pulse width, high or low	Waveform 2	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$			3.5 5.0		4.0 5.5		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { SDn, }}$ RDn pulse width, low	Waveform 2	4.5			4.0		4.5		ns
$\mathrm{t}_{\text {rec }}$	Recovery time SDn, RDn to CPn	Waveform 3	3.5			3.5		3.5		ns

AC WAVEFORMS

Waveform 1. Propagation delay for data to output, data setup time and hold times, and clock width, and maximum clock frequency

Waveform 2. Propagation delay for set and reset to output, set and reset pulse width

Waveform 4. Output skew

Waveform 3. Recovery time for set or reset to output

NOTES:

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Synchronizing cascaded dual positive

 edge-triggered D-type flip-flop
TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS:

$R_{L}=$ Load resistor; see AC ELECTRICAL CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC ELECTRICAL CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

Input Pulse Definition

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{T L}}$	$\mathbf{t}_{\mathbf{T H L}}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

Synchronizing cascaded dual positive edge-triggered D-type flip-flop

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\text { max. }}{A}$	A_{1} min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	M_{H}	W	$\underset{\max }{\mathbf{Z}^{(1)}}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.2
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.044 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT27-1	050G04	MO-001AA		\square -	$\begin{aligned} & -92-11-17 \\ & 95-03-11 \end{aligned}$

Synchronizing cascaded dual positive edge-triggered D-type flip-flop

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{\mathrm{A}}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT108-1	076E06S	MS-012AB		\square (¢)	$\begin{aligned} & -95-01-23 \\ & 97-05-22 \end{aligned}$

Synchronizing cascaded dual positive edge-triggered
74F50728 D-type flip-flop

NOTES

Synchronizing cascaded dual positive edge-triggered D-type flip-flop

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

