INTEGRATED CIRCUITS

DATA SHEET

OQ2536HP SDH/SONET STM16/OC48 demultiplexer

Product specification
File under Integrated Circuits, IC19

1998 Mar 10

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

FEATURES

- · Normal and loop (test) modes
- 1.2 V GTL (Gunning Transceiver Logic) level compatible data and clock outputs (low speed interface)
- Differential CML (Current-Mode Logic) data and clock inputs
- High input sensitivity (100 mV for the high speed inputs)
- Boundary Scan Test (BST) at low speed interface, in accordance with "IEEE Std 1149.1-1990"
- Low power dissipation (typically 1.45 W).

DESCRIPTION

The OQ2536HP is a 32-channel demultiplexer intended for use in STM16/OC48 applications. It demultiplexes a single 2.5 Gbits/s input channel to 32×78 Mbits/s output channels. The data and clock outputs on the low speed interface are GTL compatible, while the high speed data and clock inputs are CML compatible.

ORDERING INFORMATION

TYPE		PACKAGE							
NUMBER	NAME	NAME DESCRIPTION VER							
OQ2536HP	HLQFP100	plastic heat-dissipating low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT470-1						

BLOCK DIAGRAM

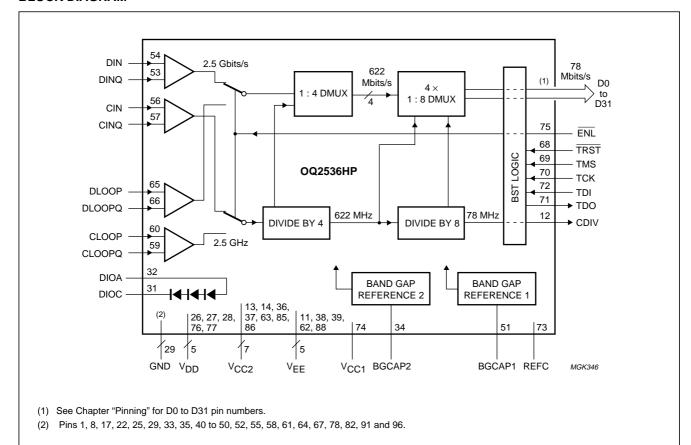


Fig.1 Block diagram.

2

1998 Mar 10

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

PINNING

SYMBOL	PIN	TYPE ⁽¹⁾	DESCRIPTION
GND	1	S	ground
D29	2	0	78 Mbits/s data output channel for D29
D25	3	0	78 Mbits/s data output channel for D25
D21	4	0	78 Mbits/s data output channel for D21
D17	5	0	78 Mbits/s data output channel for D17
D13	6	0	78 Mbits/s data output channel for D13
D9	7	0	78 Mbits/s data output channel for D9
GND	8	S	ground
D5	9	0	78 Mbits/s data output channel for D5
D1	10	0	78 Mbits/s data output channel for D1
V _{EE}	11	S	supply voltage (-4.5 V)
CDIV	12	0	78 MHz clock output
V _{CC2}	13	S	supply voltage (+1.5 V)
V _{CC2}	14	S	supply voltage (+1.5 V)
D28	15	0	78 Mbits/s data output channel for D28
D24	16	0	78 Mbits/s data output channel for D24
GND	17	S	ground
D20	18	0	78 Mbits/s data output channel for D20
D16	19	0	78 Mbits/s data output channel for D16
D12	20	0	78 Mbits/s data output channel for D12
D8	21	0	78 Mbits/s data output channel for D8
GND	22	S	ground
D4	23	0	78 Mbits/s data output channel for D4
D0	24	0	78 Mbits/s data output channel for D0
GND	25	S	ground
V_{DD}	26	I	supply voltage (+3.3 V)
V_{DD}	27	I	supply voltage (+3.3 V)
V_{DD}	28	I	supply voltage (+3.3 V)
GND	29	S	ground
i.c.	30	_	internally connected, to be left open-circuit
DIOC	31	Α	cathode of temperature diode array
DIOA	32	Α	anode of temperature diode array
GND	33	S	ground
BGCAP2	34	А	pin for connecting external band gap decoupling capacitor (4 \times 1 : 8 DMUX)
GND	35	S	ground
V _{CC2}	36	S	supply voltage (+1.5 V)
V _{CC2}	37	S	supply voltage (+1.5 V)
V _{EE}	38	S	supply voltage (–4.5 V)
V _{EE}	39	S	supply voltage (–4.5 V)
GND	40	S	ground

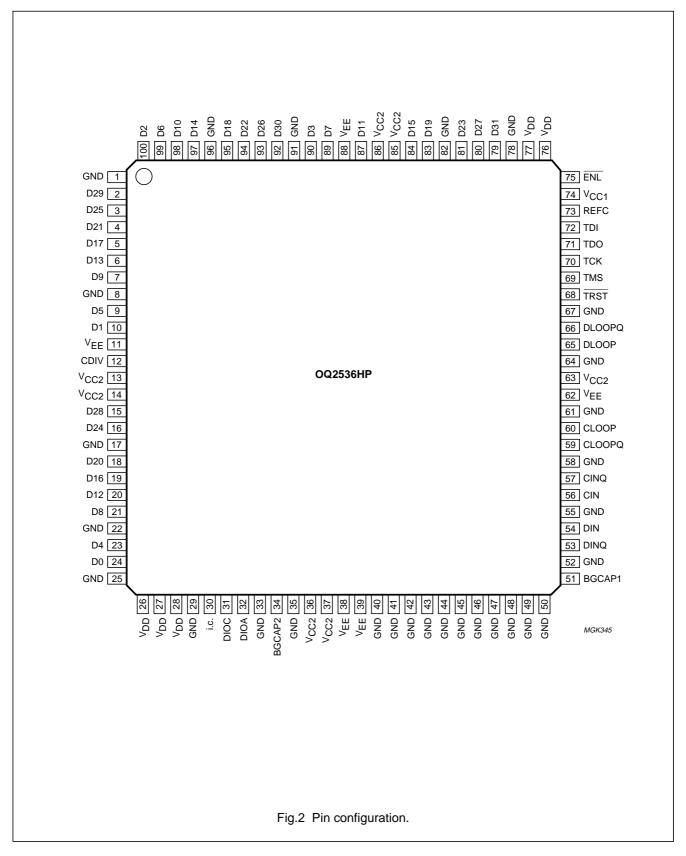
SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

SYMBOL	PIN	TYPE(1)	DESCRIPTION
GND	41	S	ground
GND	42	S	ground
GND	43	S	ground
GND	44	S	ground
GND	45	S	ground
GND	46	S	ground
GND	47	S	ground
GND	48	S	ground
GND	49	S	ground
GND	50	S	ground
BGCAP1	51	А	pin for connecting external band gap decoupling capacitor (1 : 4 DMUX)
GND	52	S	ground
DINQ	53	I	inverted data input in normal mode
DIN	54	I	data input in normal mode
GND	55	S	ground
CIN	56	I	clock input in normal mode
CINQ	57	I	inverted clock input in normal mode
GND	58	S	ground
CLOOPQ	59	I	inverted clock input from multiplexer IC OQ2535 (loop mode)
CLOOP	60	I	clock input from multiplexer IC OQ2535 (loop mode)
GND	61	S	ground
V _{EE}	62	S	supply voltage (-4.5 V)
V _{CC2}	63	S	supply voltage (+1.5 V)
GND	64	S	ground
DLOOP	65	I	data input from multiplexer IC OQ2535 (loop mode)
DLOOPQ	66	I	inverted data input from multiplexer IC OQ2535 (loop mode)
GND	67	S	ground
TRST	68	I	test RESET input for BST mode (active LOW)
TMS	69	I	test mode select input for BST
TCK	70	I	test clock input for BST mode
TDO	71	0	serial test data output for BST mode
TDI	72	I	serial test data input for BST mode
REFC	73	А	pin for connecting external reference decoupling capacitor (for standard TTL reference)
V _{CC1}	74	S	supply voltage (+5.0 V)
ENL	75	I	loop mode enable input (active LOW)
V _{DD}	76	I	supply voltage (+3.3 V)
V _{DD}	77	I	supply voltage (+3.3 V)
GND	78	S	ground
D31	79	0	78 Mbits/s data output channel for D31
D27	80	0	78 Mbits/s data output channel for D27

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP


SYMBOL	PIN	TYPE(1)	DESCRIPTION
D23	81	0	78 Mbits/s data output channel for D23
GND	82	S	ground
D19	83	0	78 Mbits/s data output channel for D19
D15	84	0	78 Mbits/s data output channel for D15
V _{CC2}	85	S	supply voltage (+1.5 V)
V _{CC2}	86	S	supply voltage (+1.5 V)
D11	87	0	78 Mbits/s data output channel for D11
V _{EE}	88	S	supply voltage (-4.5 V)
D7	89	0	78 Mbits/s data output channel for D7
D3	90	0	78 Mbits/s data output channel for D3
GND	91	S	ground
D30	92	0	78 Mbits/s data output channel for D30
D26	93	0	78 Mbits/s data output channel for D26
D22	94	0	78 Mbits/s data output channel for D22
D18	95	0	78 Mbits/s data output channel for D18
GND	96	S	ground
D14	97	0	78 Mbits/s data output channel for D14
D10	98	0	78 Mbits/s data output channel for D10
D6	99	0	78 Mbits/s data output channel for D6
D2	100	0	78 Mbits/s data output channel for D2

Note

^{1.} Pin type abbreviations: O = Output, I = Input, S = power Supply, A = Analog function.

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

FUNCTIONAL DESCRIPTION

The OQ2536HP is a 32-channel demultiplexer, intended for use in STM16/OC48 applications. It demultiplexes a single 2.5 Gbits/s input channel to 32×78 Mbits/s output channels.

The demultiplexing is performed in two stages. The 2.5 Gbits/s data channel is first demultiplexed to four 622 Mbits/s data channels. Each of these channels is then fed to a 1 : 8 demultiplexer to generate 32×78 Mbits/s output channels.

The ENL control input is used for switching between normal and loop modes. When loop mode is enabled $\overline{(ENL} = LOW)$, inputs DLOOP, DLOOPQ, CLOOP and CLOOPQ are selected. In normal mode $\overline{(ENL} = HIGH)$, inputs DIN, DINQ, CIN and CINQ are selected.

The signal applied to CIN and CINQ is a 2.5 GHz recovered clock signal, e.g. coming from the OQ2541 data and clock recovery IC. The clock is divided down to 78 MHz, which is used for receive logic timing and is available as a GTL compatible output at pin CDIV.

High bit rate stage: 1:4 DMUX

The 2.5 Gbits/s data stream is fed into a 1 : 4 demultiplexer to generate four 622 Mbits/s channels.

The input pins DIN, DINQ, DLOOP, DLOOPQ, CIN, CINQ, CLOOP and CLOOPQ are terminated internally with 50 Ω resistors to GND.

Low bit rate part: $4 \times 1 : 8$ DMUX

The four 622 Mbits/s output channels coming from the high bit rate stage are loaded into four 8-bit shift registers. The 622 MHz clock for these shift registers comes from the preceding stage.

The 32 bits contained in the shift registers are loaded into latches and made available on outputs D0 to D31. These outputs are 1.2 V GTL compatible and have internal 100 Ω pull up resistors. The 78 MHz clock output, CDIV, has an internal 50 Ω pull up resistor.

The first serial data bit coming in at DIN or DLOOP is given out at pin D31 (MSB) and so on.

The data outputs may not always represent four STM bytes. This is because the internal load pulse for the output latches is not synchronized to the STM16 frame.

Power supply connections

The power supply pins need to be individually decoupled using chip capacitors mounted as close as possible to the

IC. If multiple decoupling capacitors are used for a single supply node, large distance between the capacitances should be avoided in order to avoid resonance.

To minimize low frequency switching noise in the vicinity of the OQ2536HP, all power supply lines should be filtered once by an LC-circuit with a low cutoff frequency (as shown in the application diagram, Fig.7).

Ground connection

The ground connection on the PCB needs to be a large copper area fill connected to a common ground plane with low inductance.

RF connections

A coupled stripline or microstrip with an odd mode characteristic impedance of 50 Ω (nominal value) should be used for the RF connections on the PCB.

The connections should be kept as short as possible. This applies to the CML differential line pairs CIN and CINQ, DIN and DINQ, CLOOP and CLOOPQ, and DLOOP and DLOOPQ. In addition, the following lines should not vary in length by more than 5 mm:

- CIN, CINQ, DIN and DINQ
- DLOOP, DLOOPQ, CLOOP and CLOOPQ.

Interface to receive logic

The 78 Mbits/s interface lines, CDIV and D0 to D31, should not exceed 50 mm in length. The parasitic capacitance of these lines should be as small as possible (less than 3 pF is desirable).

ESD protection

All pads are protected by ESD protection diodes, with the exception of the high frequency inputs DIN, DINQ, DLOOP, DLOOPQ, CIN, CINQ, CLOOP and CLOOPQ.

Cooling

In many cases it is necessary to mount a special cooling device on the package. The thermal resistance from junction to case, $R_{\text{th j-c}}$ and from junction to ambient, $R_{\text{th j-a}}$, are given in Chapter "Thermal characteristics". Since the heat-slug in the package is connected to the die, the cooling device should be electrically isolated.

To calculate if a heatsink is necessary, the maximum allowed total thermal resistance R is calculated as:

$$R_{th} = \frac{T_j - T_{amb}}{P_{tot}}$$
 (1)

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

where:

R_{th} = total thermal resistance from junction to ambient in the application

 T_i = junction temperature

 T_{amb} = ambient temperature.

As long as R_{th} is greater than $R_{th j-a}$ of the OQ2536HP including environmental conditions like air flow and board layout, no heatsink is necessary. For example if $T_j = 120~^{\circ}\text{C}$, $T_{amb} = 70~^{\circ}\text{C}$ and $P_{tot} = 1.45~\text{W}$, then:

$$R_{th} = \frac{(120 - 70)}{1.45} = 34.4$$
 [K/W] (2)

which is more than the worst case $R_{th j-a} = 33$ K/W, so no heatsink is necessary.

Another example; if for safety reasons T_j should stay as low as 110 °C, while T_{amb} = 85 °C and P_{tot} = 2 W, then:

$$R_{th} = \frac{(110 - 85)}{2.0} = 12.5$$
 [K/W] (3)

In this case extra cooling is needed. The thermal resistance of the heatsink is calculated as follows:

$$R_{thh-a} \le \left(\frac{1}{R_{th}} - \frac{1}{R_{thi-a}}\right)^{-1} - R_{thj-c} - R_{thc-h}$$
 (4)

where:

R_{th h-a} = thermal resistance from heatsink to ambient

 $R_{th c-h}$ = thermal resistance from case to heatsink

 $R_{\text{th j-c}}$ = thermal resistance from junction to case, see Chapter "Thermal characteristics".

If for instance $R_{th\ c-h}$ = 0.5 K/W and $R_{th\ j\ -a}$ = 33 K/W then:

$$R_{\text{thh-a}} \le \left(\frac{1}{12.5} - \frac{1}{33}\right)^{-1} - 3.1 \le 17.0$$
 [K/W] (5)

Built in temperature sensor

Three series-connected diodes have been integrated for measuring junction temperature. The diode array, accessed by means of the DIOA (anode) and DIOC (cathode) pins, has a temperature dependency of approximately –6 mV/°C. With a diode current of 1 mA, the voltage will be somewhere in the range 1.7 to 2.5 V, depending on temperature.

Boundary Scan Test (BST) interface

Boundary scan test logic has been implemented for all digital inputs and outputs on the low frequency interface, in accordance with "IEEE Std 1149.1-1990". All scan tests other than SAMPLE mode are available. The boundary scan test logic consists of a TAP controller, a BYPASS register, a 2-bit instruction register, a 32-bit identification register and a 36-bit boundary scan register (the last two are combined). The architecture of the TAP controller and the BYPASS register is in accordance with IEEE recommendations.

The four command modes, selected be means of the instruction register, are: EXTEST (00), PRELOAD (01), IDCODE (10) and BYPASS (11).

All boundary scan test inputs, TDI, TMS, TCK and \overline{TRST} , have internal pull up resistors. The maximum test clock frequency at TCK is 12 MHz.

Table 1 BST identifier code

VERSION	OQ	2536 (BINARY)	PHILIPS SEMICONDUCTORS	LSB ⁽¹⁾
0001	01	00 1001 1110 1000	0000 0011 101 ⁽²⁾	1

Notes

- 1. LSB is shifted out first on the TDO pin.
- 2. The manufacturer's code was implemented incorrectly. It should have been 0000 0010 101.

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

Table 2 BST bit order

BIT NUMBER	SYMBOL	PIN
33 (MSB)	D31	79
32	D27	80
31	D23	81
30	D19	83
29	D15	84
28	D11	87
27	D7	89
26	D3	90
25	D30	92
24	D26	93
23	D22	94
22	D18	95
21	D14	97
20	D10	98
19	D6	99
18	D2	100
17	D29	2
16	D25	3
15	D21	4
14	D17	5
13	D13	6
12	D9	7
11	D5	9
10	D1	10
9	CDIV	12
8	D28	15
7	D24	16
6	D20	18
5	D16	19
4	D12	20
3	D8	21
2	D4	23
1	D0	24
0 (LSB) ⁽¹⁾	ENL	75

Note

1. LSB is shifted out first on the TDO pin.

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{CC1}	supply voltage	-0.5	+6.0	V
V _{EE}	supply voltage	-6.0	+0.5	V
V_{DD}	supply voltage	-0.5	+5.0	V
V _{CC2}	supply voltage	-0.5	+2.0	V
V _n	DC voltage			
	pins 2 to 7, 9, 10, 15, 16, 18 to 21, 23, 24, 79, 80, 81, 83, 84, 87, 89, 90, 92 to 95 and 97 to 100	0.0	2.0	V
	pins 53, 54, 56, 57, 59, 60, 65 and 66	-1.0	+0.5	V
	pins 68, 69, 70, 72, 73 and 75	-0.5	V _{CC1} + 0.5	V
	pins 30, 34 and 51	V _{EE} – 0.5	0.5	V
	pins 31and 32	V _{EE} – 0.5	V _{CC1} + 0.5	V
In	DC current			
	pins 2 to 7, 9, 10, 15, 16, 18 to 21, 23, 24, 79, 80, 81, 83, 84, 87, 89, 90, 92 to 95, and 97 to 100	_	15	mA
	pin 12	_	30	mA
	pins 31 and 32	_	10	mA
	pin 71	_	50	mA
P _{tot}	total power dissipation	_	2.6	W
Tj	junction temperature	_	120	°C
T _{stg}	storage temperature	-65	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-c}	thermal resistance from junction to case		2.6	K/W
R _{th j-a}	thermal resistance from junction to	see note 1		
	ambient	airflow = 0 ft/min	33	K/W
		airflow = 100 ft/min	28	K/W
		airflow = 200 ft/min	25	K/W
		airflow = 400 ft/min	22	K/W
		airflow = 600 ft/min	20	K/W

Note

1. The thermal resistance from junction to ambient is strongly depending on the board design and airflow. The values given in the table are typical values and are measured on a single sided test board with dimensions of $76 \times 114 \times 1.6$ mm. Better values can be obtained when mounted on multilayer boards with large ground planes.

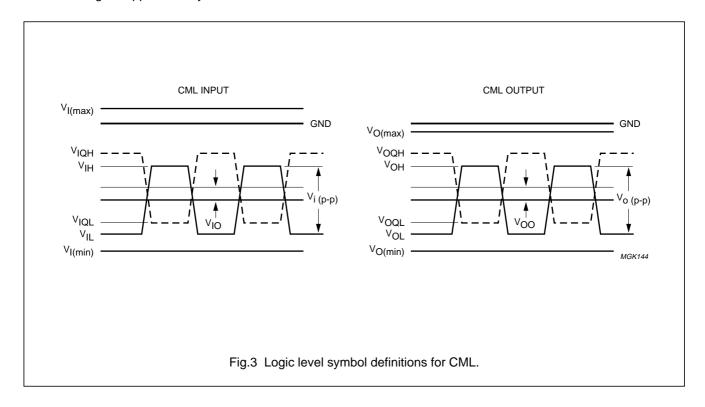
SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

DC CHARACTERISTICS

Typical values at T_{amb} = 25 °C and at typical supply voltages; minimum and maximum values are valid over the entire ambient temperature range and supply voltage range.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
General						•
V _{CC1}	supply voltage		4.75	5.0	5.25	V
V _{EE}	supply voltage		-4.75	-4.5	-4.25	V
V_{DD}	supply voltage		3.14	3.3	3.47	V
V _{CC2}	supply voltage		1.1	1.5	1.6	V
I _{CC1}	supply current		_	14	22	mA
I _{EE}	supply current		_	170	215	mA
I _{DD}	supply current		_	100	185	mA
I _{CC2}	supply current	note 1	_	190	525	mA
P _{tot}	total power dissipation	note 1	_	1.45	2.6	W
Tj	junction temperature		_	_	+120	°C
T _{amb}	ambient temperature		-40	_	+85	°C
TTL input:	ENL					
V _{IL}	LOW-level input voltage		-	_	0.8	V
V _{IH}	HIGH-level input voltage		2.0	_	_	V
I _{IL}	LOW-level input current		-90	_	-	μΑ
I _{IH}	HIGH-level input current		-	_	210	μΑ
TTL inputs:	TDI, TCK, TMS and TRST; note 2					
V _{IL}	LOW-level input voltage		_	_	0.4	V
V _{IH}	HIGH-level input voltage		2.0	_	_	V
CML inputs	:: CIN, CINQ, DIN, DINQ, CLOOP, CLOOPQ, DL	OOP and DLOOPQ; r	ote 3			•
V _{i(p-p)}	input voltage (peak-to-peak value)	50 Ω measurement	100	250	500	mV
V _{IO}	permitted input offset voltage	system	-25	_	+25	mV
$V_{I,IQ}$	input voltages]	-600	_	+250	mV
Z _i	single ended input impedance	for DC signal	_	50	_	Ω
TTL output	: TDO; note 4					
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA	_	0.3	0.5	٧
		!		•	•	


SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

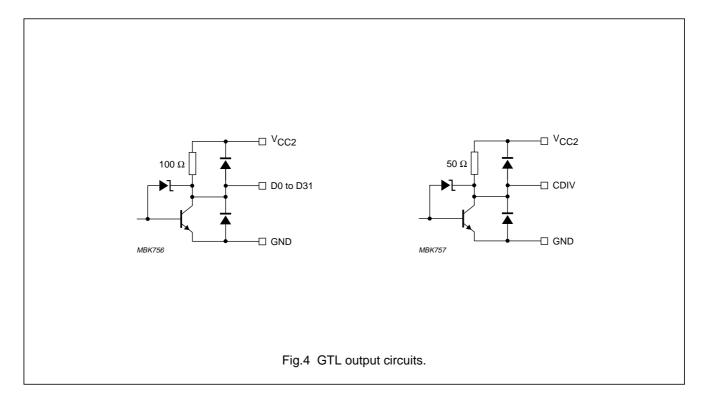
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT					
V _{OH}	HIGH-level output voltage	$I_{OH} = -400 \mu A$	2.4	4.0	_	V					
I _{OZ}	output current in high impedance state		_	_	1	μΑ					
Outputs: CDIV and D0 to D31; notes 5 and 6											
V _{OL}	LOW-level output voltage	Open outputs	-	0.3	0.4	V					
V _{OH}	HIGH-level output voltage; note 7		1.1	1.5	1.6	V					
Temperatur	Temperature diode array										
$\Delta V_{DIOA-DIOC}$	diode voltage range ⁽⁸⁾	I _{I(d)} = 1 mA	_	2.1	_	V					

Notes

- 1. Maximum current I_{CC2} and maximum power dissipation P_{tot} are worst case figures i.e. data outputs D0 to D31 remain in LOW state.
- 2. TDI, TCK, TMS and \overline{TRST} are connected via 90 k Ω to V_{DD} .
- 3. See Fig.3 for symbol definitions.
- 4. TDO is switched to high impedance state if BST is inactive.
- 5. Output CDIV has an internal pull-up resistor of 50 Ω to V_{CC2}. Outputs D0 to D31 have internal pull-up resistors of 100 Ω to V_{CC2}.
- 6. The first serial data bit coming in at DIN or DLOOP is given out at D31 (MSB) and so on.
- 7. The HIGH-level output voltage depends on the supply voltage V_{CC2} .
- 8. The temperature diode array can be used to measure the temperature of the die. The temperature dependency of this voltage is approximately –6 mV/K.

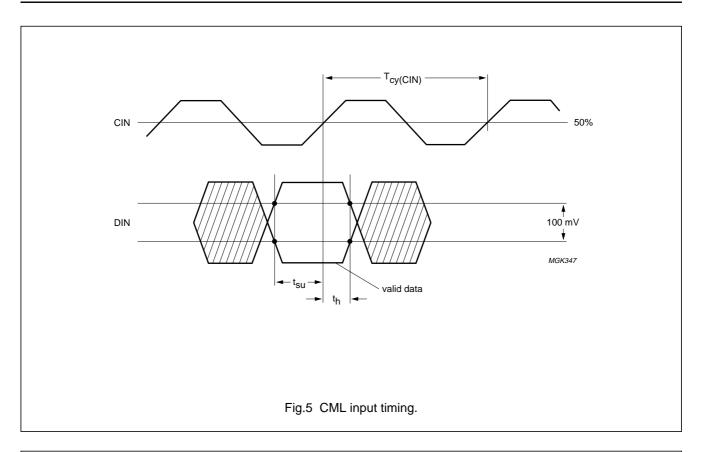
SDH/SONET STM16/OC48 demultiplexer

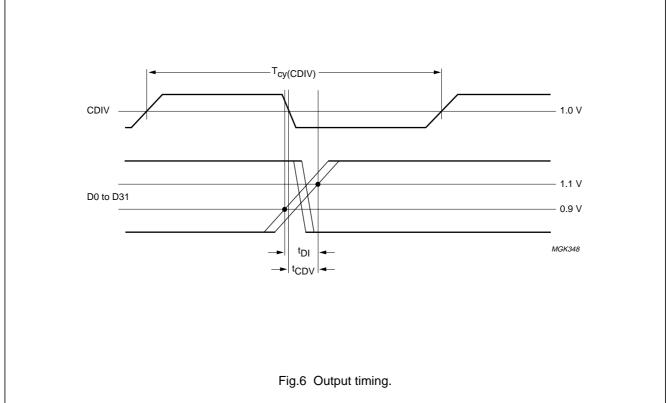
OQ2536HP


TIMING

Typical values at T_{amb} = 25 °C and at typical supply voltages; minimum and maximum values are valid over the entire ambient temperature range and supply voltage range.

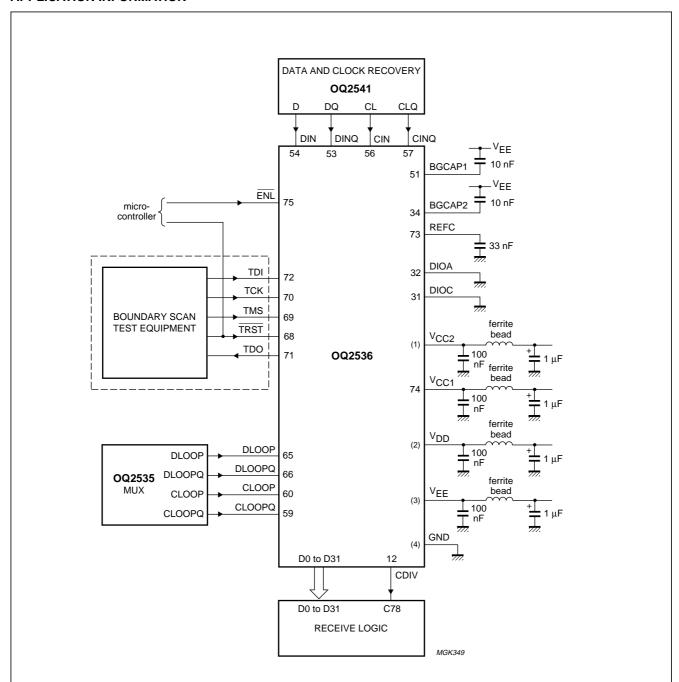
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CML input	timing; note 1; Fig.5	•	•			•
f _{clk(CIN)}	input clock frequency		2.488	-	_	GHz
t _{su}	input data set-up time		140	_	_	ps
t _h	input data hold time		80	_	_	ps
SR _{CIN}	clock slew rate		1	_	_	V/ns
TTL output	timing; note 2; Fig.6	•	•			•
f _{clk(CDIV)}	output clock frequency	$f_{Clk(CDIV)} = 2.488 \text{ GHz}$	_	77.76	_	MHz
δ_{CDIV}	output clock duty factor		-	50	-	%
t _{r(CDIV)}	output clock rise time	Measured between	_	_	2700	ps
t _{f(CDIV)}	output clock fall time	10% and 90% levels	_	_	1000	ps
t _{r(D0 to D31)}	data out rise time	of full output swing	_	_	5100	ps
t _{f(D0 to D31)}	data out fall time		_	_	1000	ps
t _{CDV}	clock edge to data valid time		_	_	2700	ps
t _{DI}	data invalid time		_	_	2850	ps


Notes


- 1. The specified timing characteristics are applicable in both normal and loop modes.
- 2. A capacitive load of 15 pF was connected at all outputs. An input reference level of 1 V was used.

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP



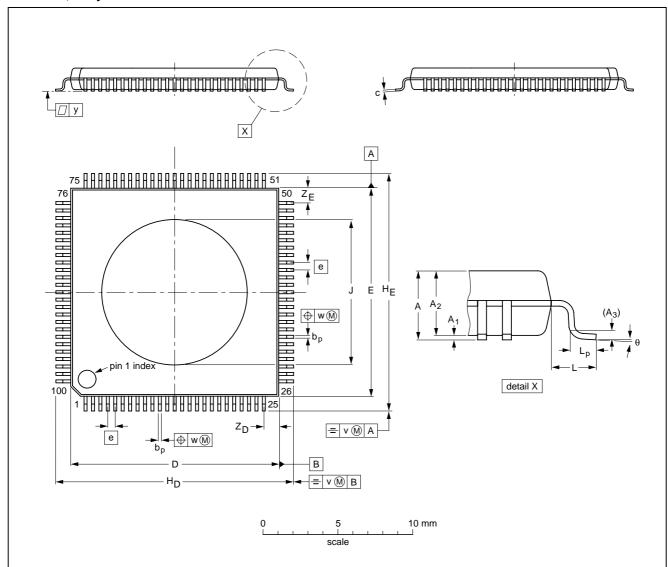
SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

APPLICATION INFORMATION

- (1) V_{CC2} pins 13, 14, 36, 37, 63, 85 and 86 should be connected together, and to the filter network.
- (2) V_{DD} pins 26, 27, 28, 76 and 77 should be connected together, and to the filter network.
- (3) V_{EE} pins 11, 38, 39, 62 and 8 should be connected together, and to the filter network.
- (4) All GND pins (pins 1, 4, 8, 9, 11, 15, 17, 21, 25, 36, 40, 56, 64, 67, 70, 73, 76, 77, 79, 80, 81, 84, 89, 92 to 98 and 100) must be connected directly to the PCB ground plane.

Fig.7 Application diagram.


SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

PACKAGE OUTLINE

HLQFP100: plastic heat-dissipating low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm

SOT470-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	J(2)	L	Lp	v	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.6	0.20 0.05	1.5 1.3	0.25	0.28 0.16	0.18 0.12	14.1 13.9	14.1 13.9	0.5	16.25 15.75	16.25 15.75	10.15 9.15	1.0	0.75 0.45	0.2	0.12	0.1	1.15 0.85	1.15 0.85	7° 0°

Notes

- 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
- 2. Heatsink intrusion 0.0127 maximum.

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT470-1						97-01-13

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all LQFP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering is **not** recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering LQFP packages LQFP48 (SOT313-2), LQFP64 (SOT314-2) or LQFP80 (SOT315-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 $^{\circ}$ C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

SDH/SONET STM16/OC48 demultiplexer

OQ2536HP

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation					

of the device at these or at any other conditions above those given in the Characteristics sections of the specification

Application information

Where application information is given, it is advisory and does not form part of the specification.

is not implied. Exposure to limiting values for extended periods may affect device reliability.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,

Tel. +61 2 9805 4455, Fax. +61 2 9805 4466

Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,

Fax. +43 160 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773

Belgium: see The Netherlands **Brazil:** see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG,

Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America
Czech Republic: see Austria

Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,

Tel. +45 32 88 2636, Fax. +45 31 57 0044 **Finland:** Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 23 53 60, Fax. +49 40 23 536 300

Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,

Tel. +30 1 4894 339/239, Fax. +30 1 4814 240

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025.

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: see Singapore

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,

Tel. +81 3 3740 5130, Fax. +81 3 3740 5077

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381 **Middle East:** see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811 **Norway:** Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain Romania: see Italy

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,

Tel. +27 11 470 5911, Fax. +27 11 470 5494 **South America:** Al. Vicente Pinzon, 173, 6th floor,

04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 632 2000, Fax. +46 8 632 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2686, Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd..

209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,

Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,

Tel. +90 212 279 2770, Fax. +90 212 282 6707

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381

Uruguay: see South America

Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 625 344, Fax.+381 11 635 777

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1998 SCA57

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands 425102/200/01/pp20 Date of release: 1998 Mar 10 Document order number: 9397 750 01623

Internet: http://www.semiconductors.philips.com

