INTEGRATED CIRCUITS

DATA SHEET

PCK111

Low voltage 1:10 differential PECL clock driver

Product data 2001 Sep 07

File under Integrated Circuits — ICL03

Low voltage 1:10 differential PECL clock driver

PCK111

FEATURES

- 100 ps part-to-part skew typical
- 35 ps output-to-output skew typical
- Differential design
- V_{BB} output
- Low voltage V_{CC} range of +2.375 V to +3.8 V for PECL
- 75 kΩ input pull-down resistors
- ECL/PECL outputs
- Form, fit, and function compatible with MC100EP111

DESCRIPTION

The PCK111 is a low skew 1-to-10 differential driver, designed with clock distribution in mind. It accepts two clock sources into an input multiplexer. The PECL input signals can be either differential or single-ended if the V_{BB} output is used. The selected signal is fanned out to 10 identical differential outputs.

The PCK111 is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate-to-gate skew within a device, and empirical modeling is used to determine process control limits that ensure consistent tpD distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

To ensure that the tight skew specification is met, it is necessary that both sides of the differential output are terminated into 50 Ω , even if only one side is being used. In most applications, all ten differential pairs will be used, and therefore terminated. In the case where fewer than ten pairs are used, it is necessary to terminate at least the output pairs on the same package side as the pair(s) being used on that side, in order to maintain minimum skew. Failure to do this will result in small degradations of propagation delay (on the order of 10–20 ps) of the output(s) being used, which, while not being catastrophic to most designs, will mean a loss of skew margin.

The PCK111 can be used for high performance clock distribution in +3.3 V or +2.5 V systems. Designers can take advantage of the PCK111's performance to distribute low skew clocks across the backplane or the board. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies.

The PCK111 may be driven single-endedly utilizing the V_{BB} bias output with the $\overline{\text{CLK0}}$ input. If a single-ended signal is to be used, the V_{BB} pin should be connected to the $\overline{\text{CLK0}}$ input and bypassed to ground via a 0.01 μF capacitor. The V_{BB} output can only source/sink 0.2 mA, therefore, it should be used as a switching reference for the PCK111 only. Part-to-part skew specifications are not guaranteed when driving the PCK111 single-endedly.

PINNING

Pin configuration

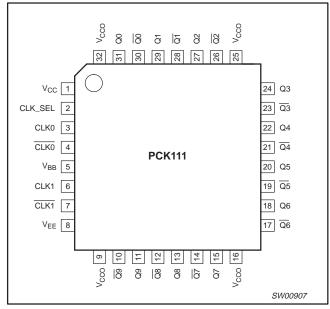


Figure 1. Pin configuration

Pin description

SYMBOL	PIN	DESCRIPTION
V _{CC}	1	Supply voltage
CLK_SEL	2	Active clock select input
CLK0, CLK0	3, 4	Differential ECL/PECL input pair
V _{BB}	5	V _{BB} output
CLK1, CLK1	6, 7	Differential HSTL input pair
V _{EE}	8	Ground
Vcco	9, 16, 25, 32	Output drive power supply voltage
Q0-Q9	31, 29, 27, 24, 22, 20, 18, 15, 13, 11	Differential PECL outputs
<u>Q0</u> – <u>Q9</u>	30, 28, 26, 23, 21, 19, 17, 14, 12, 10	Differential PECL outputs

ORDERING INFORMATION

Type number	Package	ckage						
Type number	Name	Description	Version	range				
PCK111BD	LQFP32	plastic low profile quad flat package; 32 leads; body $7 \times 7 \times 1.4$ mm	SOT358-1	–40 to +70 °C				

Low voltage 1:10 differential PECL clock driver

PCK111

LOGIC SYMBOL

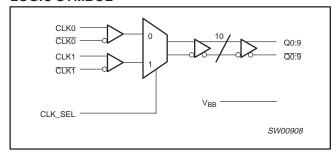


Figure 2. Logic symbol

FUNCTION TABLE

CLK_SEL	Active input
0	CLK0, CLK0
1	CLK1, CLK1

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

SYMBOL	PARAMETER	LIMITS	UNIT
V _{CC}	Supply voltage	-0.5 to +4.6	V
ESDHBM	Electrostatic discharge (Human Body Model; 1.5 kΩ, 100 pF)	>2	kV
ESDMM	Electrostatic discharge (Machine Model; 0 kΩ, 200 pF)	>200	V

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{CC}	Supply voltage	2.375	3.8	V
V _{IR}	Receiver input voltage	V _{EE}	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	-40	+85	°C

Low voltage 1:10 differential PECL clock driver

PCK111

DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 0 V, V_{ee} = -2.25 to -3.80 V

SYMBOL	PARAMETER	CONDITION	-40 °C MIN	-40 °C MAX	25 °C MIN	25 °C MAX	70 °C MIN	70 °C MAX	UNIT
I _{EE}	Internal supply current	Absolute value of current	45	85	60	95	65	105	mA
I _{CC}	Output and internal supply current	All outputs terminated 50 Ω to V_{CC} = -2.0 V	270	360	290	380	300	380	mA
I _{IN}	Input current	Includes pullup/pulldown resistors	_	150	_	150	_	150	μА
V _{BB}	Internal bias voltage	$V_{EE} = -3.0 \text{ to } -3.80 \text{ V}$	-1.38	-1.26	-1.38	-1.26	-1.38	-1.26	V
V_{BB}	Internal bias voltage	$V_{EE} = -2.25 \text{ to } -2.75 \text{ V}$	-1.38	-1.16	-1.38	-1.16	-1.38	-1.16	V
V _{IH}	Input HIGH voltage		-1.165	-0.880	-1.165	-0.880	-1.165	-0.880	V
V _{IL}	Input LOW voltage		-1.810	-1.475	-1.810	-1.475	-1.810	-1.475	V
V _{PP}	Input amplitude	Difference of input = V _{IH} – V _{IL} (Note 1)	0.5	1.3	0.5	1.3	0.5	1.3	V
V _{CMR}	Common mode voltage	Cross point of input = average (V _{IH} , V _{IL})	V _{EE} + 1.0	-0.3	V _{EE} + 1.0	-0.3	V _{EE} + 1.0	-0.3	V
V _{OH}	Output HIGH voltage	$I_{OH} = -30 \text{ mA}$	-1.3	-0.95	_	_	-1.2	0.90	V
V _{OL}	Output LOW voltage	$I_{OL} = -5 \text{ mA}$	-1.85	-1.4		_	-1.90	-1.5	V
V_{OUTpp}	Differential output swing		350	_	_	_	500	_	MV

NOTE:

DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 0 V, V_{ee} = -2.25 to -3.80 V

SYMBOL	PARAMETER	CONDITION	–40 °C MIN	-40 °C MAX	25 °C MIN	25 °C MAX	70 °C MIN	70 °C MAX	UNIT
I _{EE}	Internal supply current	Absolute value of current	45	85	60	95	65	105	mA
I _{CC}	Output and internal supply current	All outputs terminated 50 Ω to V_{CC} = -2.0 V	270	360	290	380	300	380	mA
I _{IN}	Input current	Includes pullup/pulldown resistors	_	150	_	150	_	150	μА
V _{BB}	Internal bias voltage	$V_{EE} = -3.0 \text{ to } -3.80 \text{ V}$	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V
V_{BB}	Internal bias voltage	$V_{EE} = -2.25 \text{ to } -2.75 \text{ V}$	V _{CC} -1.38	V _{CC} -1.16	V _{CC} -1.38	V _{CC} -1.16	V _{CC} -1.38	V _{CC} -1.16	V
V _{IH}	Input HIGH voltage		V _{CC} -1.165	V _{CC} -0.880	V _{CC} -1.16	V _{CC} -0.880	V _{CC} -1.16	V _{CC} -0.880	V
V _{IL}	Input LOW voltage		V _{CC} -1.810	V _{CC} -1.475	V _{CC} -1.810	V _{CC} -1.475	V _{CC} -1.810	V _{CC} -1.475	V
V _{PP}	Input amplitude	Difference of input = V _{IH} - V _{IL} (Note 1)	0.5	1.3	0.5	1.3	0.5	1.3	V
V_{CMR}	Common mode voltage	Cross point of input = average (V _{IH} , V _{IL})	1.0	V _{CC} -0.3	1.0	V _{CC} -0.3	1.0	V _{CC} -0.3	V
V _{dif}	Differential input voltage	Difference of input = V _{IH} - V _{IL}	0.4	1.9	0.4	1.9	0.4	1.9	V
V _x	Input crossover voltage	Cross point of input = average (V _{IH} , V _{IL})	0.68	0.9	0.68	0.9	0.68	0.9	V
V _{OH}	Output HIGH voltage	I _{OH} = -30 mA	V _{CC} -1.30	V _{CC} -0.95	_	_	V _{CC} -1.20	V _{CC} -0.90	V
V _{OL}	Output LOW voltage	I _{OL} = -5 mA	V _{CC} -1.85	V _{CC} -1.40	_	_	V _{CC} -1.90	V _{CC} -1.50	V
V_{OUTpp}	Differential output swing		350		_		500	_	MV

NOTE:

^{1.} V_{PP} minimum and maximum required to maintain AC specifications. Actual device function will tolerate minimum V_{PP} of 100 mV.

^{1.} V_{PP} minimum and maximum required to maintain AC specifications. Actual device function will tolerate minimum V_{PP} of 100 mV.

Low voltage 1:10 differential PECL clock driver

PCK111

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.25 to 3.80 V, V_{EE} = 0 V, or V_{CC} = 0 V, V_{EE} = -2.25 to -3.80 V

SYMBOL	PARAMETER	CONDITION	-40 °C MIN	–40 °C MAX	25 °C MIN	25 °C MAX	70 °C MIN	70 °C MAX	UNIT
t _{PD}	Differential propagation delay	Nominal (single input condition) $V_{PP} = 0.650 \text{ V}$, $V_{CMR} = V_{CC} - 0.800 \text{ V}$ (Note 1)	350	500	380	530	450	600	ps
t _{skew}	Part-to-part skew	Note 1	_	150	_	150	_	150	ps
t _{skew}	Output-to-output same part skew	Note 1	_	70	_	65	_	60	ps
t _{PD}	Differential propagation delay	Note 1	280	600	300	620	370	700	ps
t _{skew}	Part-to-part skew	Note 1	_	320	_	320	_	320	ps
t _{skew}	Output-to-output same part skew	Note 1	_	70	_	65	_	60	ps
f _{MAX}	Maximum output frequency	Functional to 1.5 GHz; Timing specifications apply to 1.0 GHZ		1500		1500		1500	MHz
t _r /t _f	Output rise/fall time at 20% to 80%	All outputs terminated 50 Ω to V _{CC} – 2.0 V	100	300	100	300	100	300	ps

NOTE:

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.25 to 3.80 V, V_{EE} = 0 V

SYMBOL	PARAMETER	CONDITION	-40 °C MIN	-40 °C MAX	25 °C MIN	25 °C MAX	70 °C MIN	70 °C MAX	UNIT
t _{PD}	Differential propagation delay	Nominal (single input condition) $V_{PP} = 0.650 \text{ V}$, $V_{CMR} = V_{CC} - 0.800 \text{ V}$ (Note 1)	380	530	420	570	500	650	ps
t _{skew}	Part-to-part skew	Note 1	l –	150	_	150	_	150	ps
t _{skew}	Output-to-output same part skew	Note 1	_	70	_	65	_	60	ps
t _{PD}	Differential propagation delay	Note 1	300	600	350	650	430	750	ps
t _{skew}	Part-to-part skew	Note 1	_	300	_	300	_	320	ps
t _{skew}	Output-to-output same part skew	Note 1	_	70	_	65	_	60	ps
f _{MAX}	Maximum output frequency	Functional to 1.5 GHz; Timing specifications apply to 1.0 GHZ	_	250	_	250	_	250	MHz
t _r /t _f	Output rise/fall time at 20% to 80%	All outputs terminated 50 Ω to V _{CC} – 2.0 V	100	300	100	300	100	300	ps

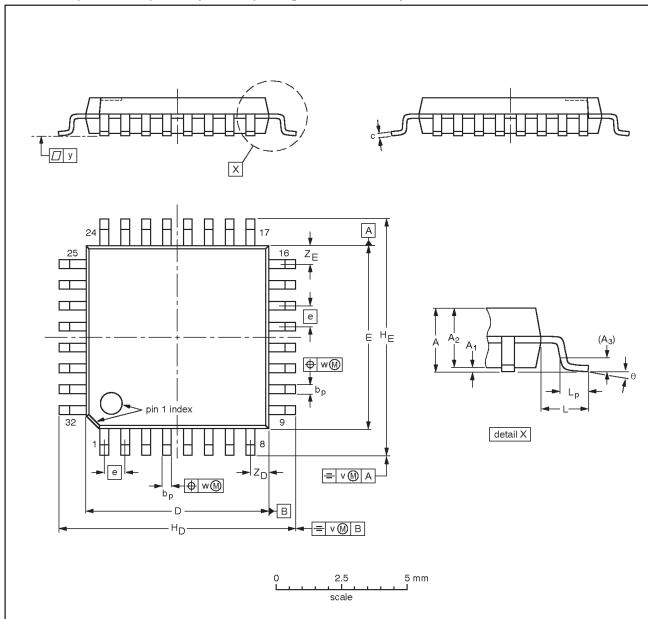
NOTE:

^{1.} For operation with 2.5 V supply, the output termination is 50 Ω to V_{EE}. For operation with 3.3 V supply, the output termination is 50 Ω to V_{CC} – 2 V.

^{1.} For operation with 2.5 V supply, the output termination is 50 Ω to V_{EE}. For operation with 3.3 V supply, the output termination is 50 Ω to V_{CC}-2 V.

Low voltage 1:10 differential PECL clock driver

PCK111


NOTES

Low voltage 1:10 differential PECL clock driver

PCK111

LQFP32: plastic low profile quad flat package; 32 leads; body 7 x 7 x 1.4 mm

SOT358-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	L	Lp	٧	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.60	0.20 0.05	1.45 1.35	0.25	0.4 0.3	0.18 0.12	7.1 6.9	7.1 6.9	0.8	9.15 8.85	9.15 8.85	1.0	0.75 0.45	0.2	0.25	0.1	0.9 0.5	0.9 0.5	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT358 -1	136E03	MS-026			-99-12-27- 00-01-19

2001 Sep 07 7

Low voltage 1:10 differential PECL clock driver

PCK111

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

© Koninklijke Philips Electronics N.V. 2001 All rights reserved. Printed in U.S.A.

Date of release: 09-01

Document order number: 9397 750 09113

Let's make things better.

Philips Semiconductors

^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.