INTEGRATED CIRCUITS

DATA SHEET

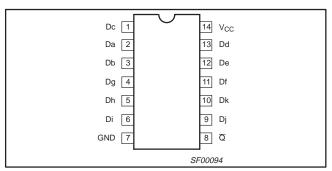
74F644-2-3-2-input AND-OR-invert gate

Product specification

1996 Mar 14

IC15 Data Handbook

4-2-3-2-input AND-OR-invert gate

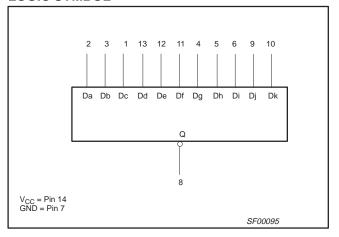

74F64

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F64	4.0ns	2.5mA

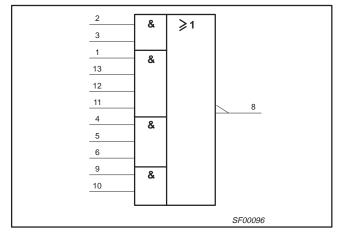
ORDERING INFORMATION

DESCRIPTION	COMMERCIAL RANGE $V_{CC} = 5V \pm 10\%, \\ T_{amb} = 0^{\circ}\text{C to } + 70^{\circ}\text{C}$	PKG. DWG. #
14-pin plastic DIP	N74F64N	SOT27-1
14-pin plastic SO	N74F64D	SOT108-1

PIN CONFIGURATION



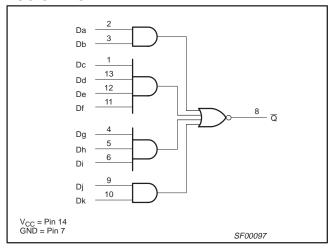
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE


PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
Dn	Data inputs	1.0/1.0	20μA/0.6mA
Q	Data output	50/33	1.0mA/20mA

NOTE: One (1.0) FAST unit load is defined as: 20μA in the High state and 0.6mA in the Low state.

LOGIC SYMBOL

IEC/IEEE SYMBOL



Philips Semiconductors Product specification

4-2-3-2-input AND-OR-invert gate

74F64

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS										OUTPUT	
Da	Db	Dc	Dd	De	Df	Dg	Dh	Di	Dj	Dk	Q
Н	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	L
X	Χ	Н	Н	Н	Н	Χ	Χ	X	Χ	Х	L
X	Χ	Χ	Χ	Χ	X	Н	Н	Н	Χ	Х	L
X	$X \qquad X \qquad X \qquad X \qquad X \qquad X \qquad X \qquad H \qquad H$										
	All other combinations										Н

NOTES:

H = High voltage level
 L = Low voltage level
 X = Don't care

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	-30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	−0.5 to V _{CC}	V
I _{OUT}	Current applied to output in Low output state	40	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

3 1996 Mar 14

Philips Semiconductors Product specification

4-2-3-2-input AND-OR-invert gate

74F64

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS		UNIT
STWIBUL	PARAMETER	MIN	NOM	MAX	UNII
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	High-level input voltage	2.0			V
V _{IL}	Low-level input voltage			0.8	V
I _{IK}	Input clamp current			-18	mA
I _{OH}	High-level output current			-1	mA
I _{OL}	Low-level output current			20	mA
T _{amb}	Operating free-air temperature range	0		+70	°C

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

CVMDOL	DADAMETER	TEST COMPITIO	NC1		LIMITS		LINUT
SYMBOL	PARAMETER	TEST CONDITIO	1231 CONDITIONS			MAX	UNIT
V	High-level output voltage	V _{CC} = MIN, V _{IL} = MAX	±10%V _{CC}	2.5			V
V _{OH}	Tright-level output voltage	$V_{IH} = MIN, I_{OH} = MAX$	±5%V _{CC}	2.7	3.4		V
V	Low-level output voltage	V _{CC} = MIN, V _{IL} = MAX	±10%V _{CC}		0.30	0.50	V
V _{OL}	Low-level output voltage	$V_{IH} = MIN, I_{OL} = MAX$		0.30	0.50	V	
V _{IK}	Input clamp voltage	$V_{CC} = MIN, I_I = I_{IK}$			-0.73	-1.2	V
I _I	Input current at maximum input voltage	$V_{CC} = MAX, V_I = 7.0V$			100	μΑ	
I _{IH}	High-level input current	$V_{CC} = MAX, V_I = 2.7V$				20	μΑ
I _{IL}	Low-level input current	$V_{CC} = MAX, V_I = 0.5V$				-0.6	mA
I _{OS}	Short-circuit output current ³	V _{CC} = MAX	-60		-150	mA	
l	Supply current (total)	\/MAY	V _{IN} = GND	·	1.9	2.8	mA
Icc	Supply current (total) I _{CCL}	V _{CC} = MAX	V _{IN} = 4.5V		3.1	4.7	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

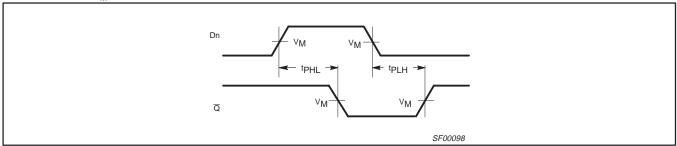
1996 Mar 14

All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
 Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Philips Semiconductors Product specification

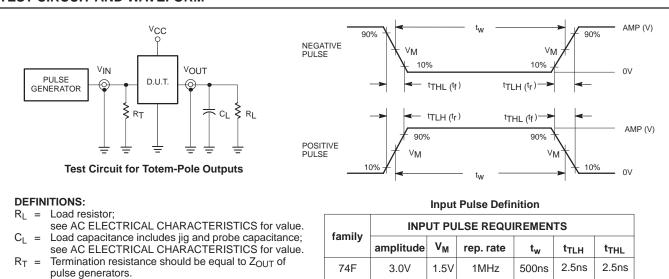
4-2-3-2-input AND-OR-invert gate

74F64


SF00006

AC ELECTRICAL CHARACTERISTICS

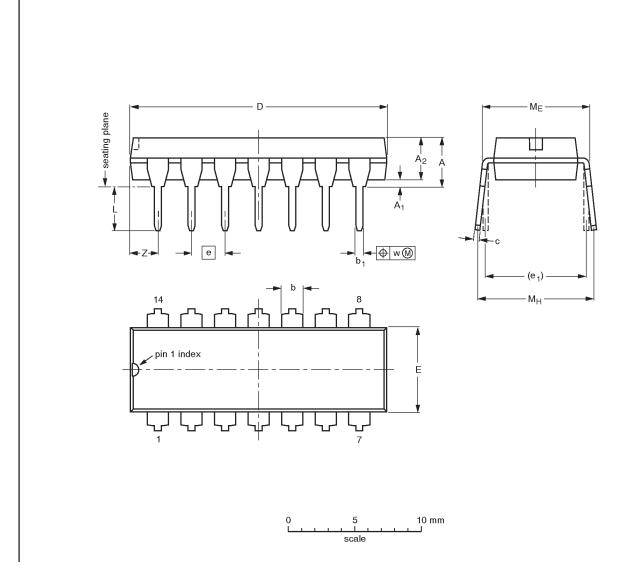
			LIMITS						
SYMBOL	PARAMETER	TEST CONDITION	$V_{CC} = +5.0V$ $T_{amb} = +25^{\circ}C$ $C_{L} = 50pF, R_{L} = 500\Omega$			V _{CC} = +5. T _{amb} = 0°C C _L = 50pF,	UNIT		
			MIN	TYP	MAX	MIN	MAX		
t _{PLH} t _{PHL}	Propagation delay Dn to Q	Waveform 1	2.5 2.0	4.6 3.2	6.0 4.5	2.5 2.0	7.0 5.5	ns	


AC WAVEFORMS

For all waveforms, $V_M = 1.5V$.

Waveform 1. Propagation Delay for Inverting Outputs

TEST CIRCUIT AND WAVEFORM


1996 Mar 14 5

4-2-3-2 Input AND-OR Invert Gate

74F64

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

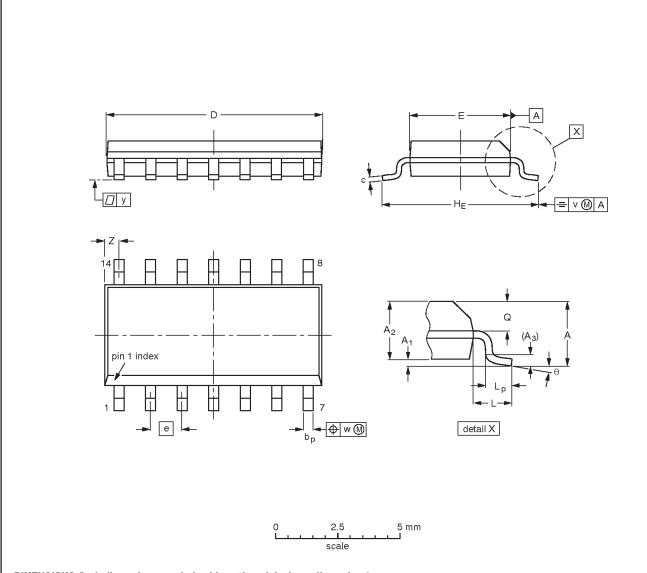
DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES		EUROPEAN	ISSUE DATE	
VERSION	VERSION IEC JEDEC EIAJ					ISSUE DATE	
SOT27-1	050G04	MO-001AA				92-11-17 95-03-11	


1996 Mar 14 6

4-2-3-2 Input AND-OR Invert Gate

74F64

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT108-1	076E06S	MS-012AB				95-01-23 97-05-22

1996 Mar 14 7

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act.

© Copyright Philips Electronics North America Corporation 1996
All rights reserved. Printed in U.S.A.