INTEGRATED CIRCUITS

DATA SHEET

74LV4316Quad bilateral switches

Product specification
Supersedes data of 1994 Dec 01
IC24 Data Handbook

Quad bilateral switches

74LV4316

FEATURES

- Optimized for Low Voltage applications: 1.0V to 6.0V
- Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V
- Low typ "ON" resistance: 80Ω at $V_{CC} - VEE = 4.5V$ 120Ω at $V_{CC} - VEE = 3.0V$ 295Ω at V_{CC} – VEE = 2.0V
- Logic level translation: to enable 3V logic to communicate with $\pm 3V$ analog signals
- Typical "break before make" built in
- Output capability: non-standard
- I_{CC} category: MSI

DESCRIPTION

The 74LV4316 is a low-voltage CMOS device that is pin and function compatible with 74HC/HCT4316.

The 74LV4316 has four independent analog switches. Each switch has two input/output terminals (nY, nZ) and an active HIGH select input (nS). When the enable input (\overline{E}) is HIGH, all four analog switches are turned off.

Current through a switch will not cause additional V_{CC} current provided the voltage at the terminals of the switch is maintained within the supply voltage range; $V_{CC} > (V_Y, V_Z) > V_{EE}$. Inputs nY and nZ are electrically equivalent terminals. V_{CC} and GND are the supply voltage pins for the digital control inputs (E and nS). The V_{CC} to GND ranges are 1.0 to 6.0 V.

The analog inputs/outputs (nY and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit.

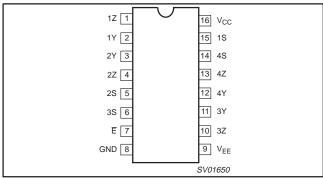
V_{CC} – V_{EE} may not exceed 6.0 V.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PZH} /t _{PZL}	Turn "ON" time: E to V _{OS} nS to V _{OS}	$C_L = 15pF$ $R_L = 1K\Omega$ $V_{CC} = 3.3V$	19	ns
t _{PHZ} /t _{PLZ}	Turn "OFF" time: E to V _{OS} nS to V _{OS}		20	ns
C _I	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per switch	Notes 1, 2	13	pF
C _S	Maximum switch capacitance		5	pF

NOTES:

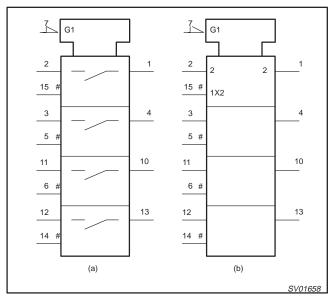

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW)

 - $\begin{array}{l} P_D = C_{PD} \times V_{CC}{}^2 \times f_i + \sum \left(C_L \times V_{CC}{}^2 \times f_o \right) \text{ where:} \\ f_i = \text{input frequency in MHz; } C_L = \text{output load capacity in pF;} \\ f_o = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V;} \end{array}$
- V_{CC} = supply voltage in V: $\sum (C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.
- 2. The condition is $V_I = GND$ to V_{CC} .

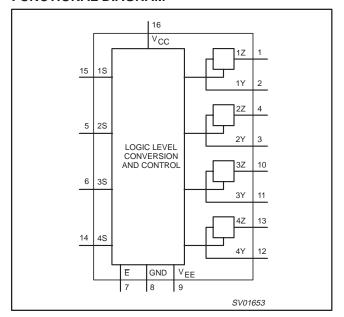
ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic DIL	–40°C to +125°C	74LV4316 N	74LV4316 N	SOT38-4
16-Pin Plastic SO	–40°C to +125°C	74LV4316 D	74LV4316 D	SOT109-1
16-Pin Plastic SSOP Type II	-40°C to +125°C	74LV4316 DB	74LV4316 DB	SOT338-1
16-Pin Plastic TSSOP Type I	–40°C to +125°C	74LV4316 PW	74LV4316PW DH	SOT403-1

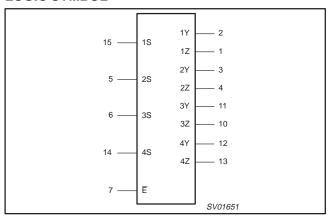
PIN CONFIGURATION

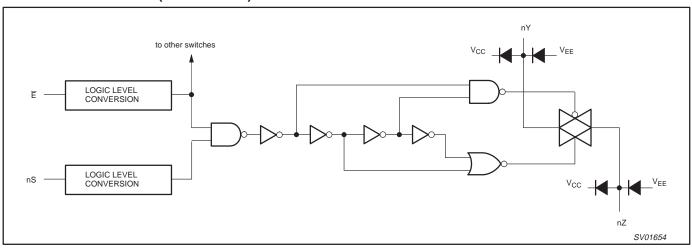

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1, 4, 10, 13	1Z – 4Z	Independent inputs/outputs
2, 3, 11, 12	1Y – 4Y	Independent inputs/outputs
7	Ē	Enable input (active LOW)
8	GND	Ground (0V)
9	V _{EE}	Negative supply voltage
15, 5, 6, 14	1S – 4S	Select inputs (active HIGH)
16	V _{CC}	Positive supply voltage


Quad bilateral switches

74LV4316


IEC LOGIC SYMBOL


FUNCTIONAL DIAGRAM

LOGIC SYMBOL

SCHEMATIC DIAGRAM (ONE SWITCH)

Quad bilateral switches

74LV4316

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	DC supply voltage	See Note 1	1.0	3.3	6.0	V
V _I	Input voltage		0	_	V _{CC}	V
Vo	Output voltage		0	_	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0V \text{ to } 2.0V$ $V_{CC} = 2.0V \text{ to } 2.7V$ $V_{CC} = 2.7V \text{ to } 3.6V$ $V_{CC} = 3.6V \text{ to } 5.5V$	 - -	- - -	500 200 100 50	ns/V

NOTE:

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134).

Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
± I _{IK}	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5V$	20	mA
± I _{OK}	DC output diode current	$V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5V$	20	mA
±I _O	DC switch current	$-0.5V < V_O < V_{CC} + 0.5V$	25	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

^{1.} The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Quad bilateral switches

74LV4316

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-4	0°C to +8∜	5°C	-40°C to	+125°C	TINU
			MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2 V	0.90			0.90		
		V _{CC} = 2.0 V	1.40			1.4		1
V_{IH}	HIGH level Input voltage	V _{CC} = 2.7 to 3.6 V	2.00			2.0		V
	Voltage	V _{CC} = 4.5 V	3.15			3.15		1
		V _{CC} = 6.0 V	4.20			4.20		1
		V _{CC} = 1.2 V			0.30		0.30	
		V _{CC} = 2.0 V			0.60		0.60	1
V_{IL}	LOW level Input voltage	V _{CC} = 2.7 to 3.6 V			0.80		0.80	V
	voltage	V _{CC} = 4.5 V			1.35		1.35	1
		V _{CC} = 6.0 V			1.80		1.80	1
±l _l	Input leakage current	$V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND}$ $V_{CC} = 6.0 \text{ V}; V_I = V_{CC} \text{ or GND}$			1.0 2.0		1.0 2.0	μА
±IS	Analog switch OFF-state current per channel	V _{CC} = 3.6 V; V _I = V _{IH} or V _{IL} V _{CC} = 6.0 V; V _I = V _{IH} or V _{IL}			1.0 2.0		1.0 2.0	μА
±IS	Analog switch ON-state current per channel	V _{CC} = 3.6 V; V _I = V _{IH} or V _{IL} V _{CC} = 6.0 V; V _I = V _{IH} or V _{IL}			1.0 2.0		1.0 2.0	μА
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or GND; } I_O = 0$ $V_{CC} = 6.0V; V_I = V_{CC} \text{ or GND; } I_O = 0$			20 40		40 80	μА
ΔI_{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}; V_{I} = V_{CC} - 0.6 \text{ V}$			500		850	μА
R _{ON}	ON-resistance (peak)	$\begin{array}{c} V_{CC} = 1.2 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 2.0 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 2.7 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 3.0 \text{ to } 3.6 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 4.5 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 6.0 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ \end{array}$		295 120 110 80 70	- 860 300 270 200 180		- 990 360 325 240 215	Ω
R _{ON}	ON-resistance (rail)	$\begin{array}{c} V_{CC} = 1.2 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 2.0 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 2.7 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 3.0 \text{ to } 3.6 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 4.5 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 6.0 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ \end{array}$		225 110 85 55 40 35	- 240 150 135 100 90		- 290 180 180 120 110	Ω
R _{ON}	ON-resistance (rail)	$\begin{array}{c} V_{CC} = 1.2 \; \text{V}; \; \text{V}_{I} = \text{V}_{IH} \; \text{or} \; \text{V}_{IL} \\ V_{CC} = 2.0 \; \text{V}; \; \text{V}_{I} = \text{V}_{IH} \; \text{or} \; \text{V}_{IL} \\ V_{CC} = 2.7 \; \text{V}; \; \text{V}_{I} = \text{V}_{IH} \; \text{or} \; \text{V}_{IL} \\ V_{CC} = 3.0 \; \text{to} \; 3.6 \; \text{V}; \; \text{V}_{I} = \text{V}_{IH} \; \text{or} \; \text{V}_{IL} \\ V_{CC} = 4.5 \; \text{V}; \; \text{V}_{I} = \text{V}_{IH} \; \text{or} \; \text{V}_{IL} \\ V_{CC} = 6.0 \; \text{V}; \; \text{V}_{I} = \text{V}_{IH} \; \text{or} \; \text{V}_{IL} \end{array}$		250 120 75 60 45 40	- 270 170 155 115 105		- 325 205 180 135 120	Ω
ΔR _{ON}	Maximum variation of ON-resistance between any two channels	$\begin{array}{c} V_{CC} = 1.2 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 2.0 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 2.7 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 3.0 \text{ to } 3.6 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 4.5 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ V_{CC} = 6.0 \text{ V; } V_{I} = V_{IH} \text{ or } V_{IL} \\ \end{array}$		- 5 4 4 3 2				Ω

NOTE:

All typical values are measured at T_{amb} = 25°C.
 At supply voltage approaching 1.2V, the analog switch ON-resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

Quad bilateral switches

74LV4316

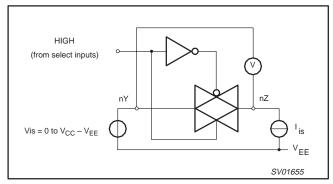


Figure 1. Test circuit for measuring ON-resistance (Ron).

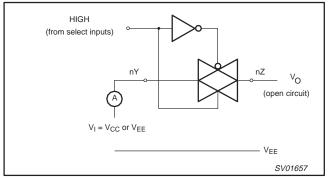


Figure 3. Test circuit for measuring ON-state current.

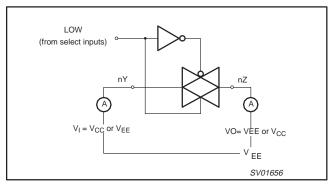


Figure 2. Test circuit for measuring OFF-state current.

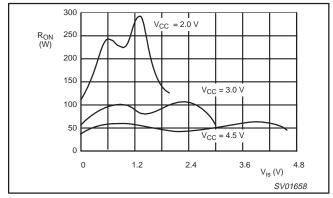


Figure 4. Typical ON-resistance (R_{ON}) as a function of input voltage (V_{is}) for V_{is} = 0 to V_{CC} – V_{EE}.

Quad bilateral switches

74LV4316

AC CHARACTERISTICS

 $GND = 0 \ V; \ t_f = t_f \leq 2.5 ns; \ C_L = 50 pF$

				LIMITS					CONDITION
SYMBOL	PARAMETER	-4	10 to +85 °	C	–40 to	+125 °C	UNIT		CONDITION
		MIN	TYP ¹	MAX	MIN	MAX		V _{CC} (V)	OTHER
			30					1.2	
			10	19		24		2.0	1_
t _{PHL} /t _{PLH}	Propagation delay		8	14		18	ns	2.7	$R_L = \infty$; $C_L = 50 \text{ pF}$
'PHL' 'PLH	V_{is} to V_{os}		6 [*]	11		14	113	3.0 to 3.6	Figure 12
			5	9		12		4.5	1 *
			4	7		9		6.0	1
			110					1.2	
			37	70		85		2.0]
t _{PZH} /t _{PZL}	Turn-on time		28	51		63	ns	2.7	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$
'PZH' 'PZL	E to V _{os}		21 ²	41		50	113	3.0 to 3.6	Figures 13 and 14
			19	35		43		4.5]
			15	27		33		6.0	
			95					1.2	
			32	61		75	1	2.0] , , , , ,
t _{PZH} /t _{PZL}	Turn-on time		24	45		55	ns	2.7	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$
'PZH' 'PZL	nS to V _{os}		18 ²	36		44	110	3.0 to 3.6	Figures 13 and 14
			16	31		37		4.5	
			12	23		29		6.0	
			105					1.2	
			37	68		80		2.0] ₀ 41.0.
t _{PHZ} /t _{PLZ}	Turn-off time		28	51		59	ns	2.7	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$
PHZ/PLZ	E to V _{os}		22 ²	41		48	110	3.0 to 3.6	Figures 13 and 14
			20	35		41		4.5]
			16	28		32		6.0	
			90					1.2	
			32	59		70		2.0	B = 1 kO:
t _{PHZ} /t _{PLZ}	Turn-off time		24	44		52	ns	2.7	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$
YHZ' YLZ	nS to V _{os}		19 ²	36		42	110	3.0 to 3.6	Figures 13 and 14
			17	31		36		4.5	
			14	24		28		6.0	

NOTES:

1. All typical values are measured at T_{amb} = 25°C.

2. All typical values are measured at V_{CC} = 3.3V

Quad bilateral switches

74LV4316

ADDITIONAL AC CHARACTERISTICS

GND = 0 V; $t_r = t_f \le 2.5 \text{ns}$; $C_L = 50 \text{pF}$

SYMBOL	PARAMETER	TYP	UNIT	V _{CC} (V)	V _{IS(P-P)} (V)	CONDITIONS
	Sine-wave distortion f = 1 kHz	0.80	%	3.0	2.75	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$
	Sine-wave distortion 1 = 1 KHZ	0.40	70	6.0	5.50	Figure 10
	Sine-wave distortion f = 10 kHz	2.40	%	3.0	2.75	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$
	Sine-wave distortion 1 = 10 km2	1.20	76	6.0	5.50	Figure 10
	Switch "OFF" signal feed through	-50	dB	3.0	Note 1	$R_L = 600 \text{ k}\Omega; C_L = 50 \text{ pF}; f=1 \text{ MHz}$
	Switch Of F Signal reed through	-50	ub	6.0		Figures 5 and 11
	Crosstalk between any two switches	-60	dB	3.0	Note 1	$R_L = 600 \text{ k}\Omega; C_L = 50 \text{ pF}; f=1 \text{ MHz}$
	Crosstaik between any two switches	-60	uБ	6.0		Figure 7
V _(p-p)	Crosstalk voltage between enable or address	110	mV	3.0		R_L = 600 kΩ; C_L = 50 pF; f=1 MHz (nS or \overline{E} , square wave between V_{CC}
v (p–p)	input to any switch (peak-to-peak value)	220	1110	6.0		and GND, $T_r = t_f = 6$ ns) Figure 8
f	Minimum frequency response (-3 dB)	180	mHz	3.0	Note 2	$R_L = 50 \text{ k}\Omega; C_L = 50 \text{ pF}$
† _{max}	willimidin frequency response (=3 db)	200	111112	6.0		Figures 6 and 9
C _S	Maximum switch capacitance	5	pF			

GENERAL NOTES:

 V_{is} is the input voltage at nY or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at nY or nZ terminal, whichever is assigned as an output. NOTES:

- 1. Adjust input voltage V_{is} is 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} is 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

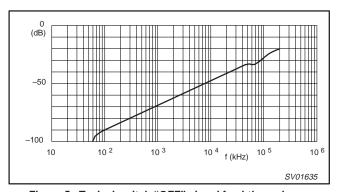


Figure 5. Typical switch "OFF" signal feed-through as a function of frequency.

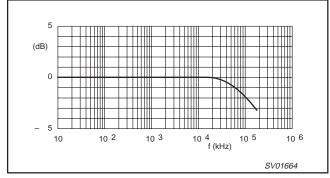


Figure 6. Typical frequency response.

NOTES TO FIGURES 5 AND 6:

Test conditions: V_{CC} = 3.0 V; GND = 0 V; R_L = 50 Ω ; R_{SOURCE} = 1k Ω .

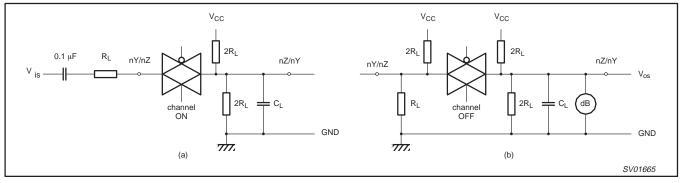


Figure 7. Test circuit for measuring crosstalk between any two switches.

(a) channel ON condition; (b) channel OFF condition.

Quad bilateral switches

74LV4316

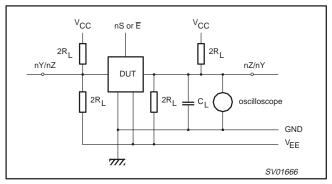
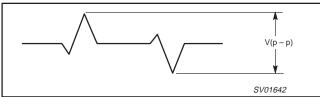



Figure 8. Test circuit for measuring crosstalk between control and any switch.

NOTE TO FIGURE 8:

The crosstalk is defined as follows (oscilloscope output):

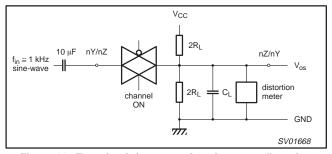


Figure 10. Test circuit for measuring sine-wave distortion.



Figure 9. Test circuit for measuring minimum frequency response.

NOTE TO FIGURE 9:

Adjust input voltage to obtain 0 dBm at V_{OS} when F_{in} = 1 MHz. After set-up frequency of f_{in} is increased to obtain a reading of –3 dB at V_{OS}

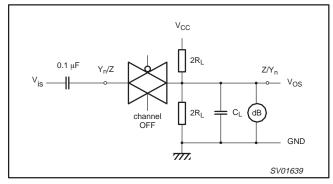


Figure 11. Test circuit for measuring switch "OFF" signal feed-through.

Quad bilateral switches

74LV4316

WAVEFORMS

 $V_{M} = 1.5 \text{ V at } 2.7 \text{ V} \le V_{CC} \le 3.6 \text{ V}$

 $V_{M} = 0.5 \times V_{CC}$ at 2.7 V > $V_{CC} > 3.6$ V

 V_{OL}^{m} and V_{OH} are the typical output voltage drop that occur with the output load

 $\begin{array}{l} \text{V}_{\text{X}} = \text{V}_{\text{OL}} + 0.3 \text{ V at } 2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V} \\ \text{V}_{\text{X}} = \text{V}_{\text{OL}} + 0.1 \times \text{V}_{\text{CC}} \text{ at } 2.7 \text{ V} > \text{V}_{\text{CC}} > 3.6 \text{ V} \\ \text{V}_{\text{Y}} = \text{V}_{\text{OH}} - 0.3 \text{ V at } 2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V} \\ \text{V}_{\text{Y}} = \text{V}_{\text{OH}} - 0.1 \times \text{V}_{\text{CC}} \text{ at } 2.7 \text{ V} > \text{V}_{\text{CC}} > 3.6 \text{ V} \end{array}$

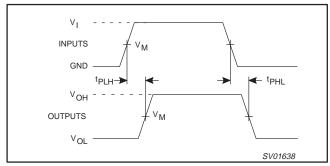


Figure 12. Input (Vis) to output (Vos) propagation delays.

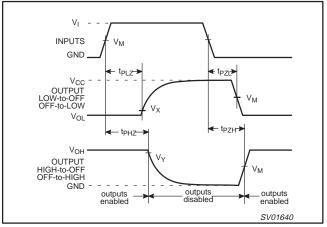
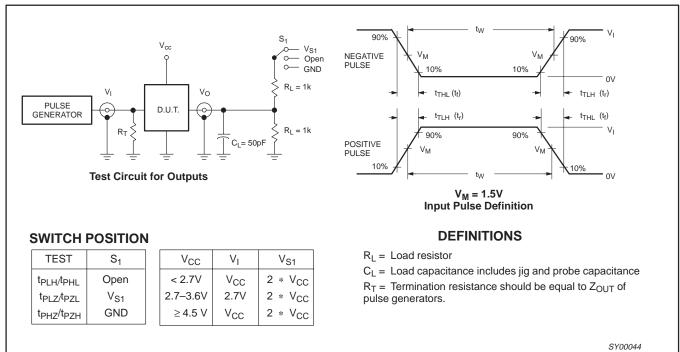
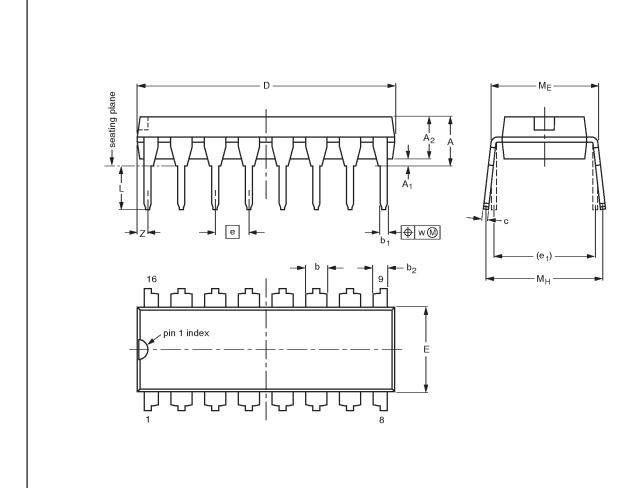


Figure 13. Turn-on and turn-off times for the inputs (nS, \overline{E}) to the output (V_{os}).

TEST CIRCUIT




Figure 14. Load circuitry for switching times.

Quad bilateral latches

74LV4316

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

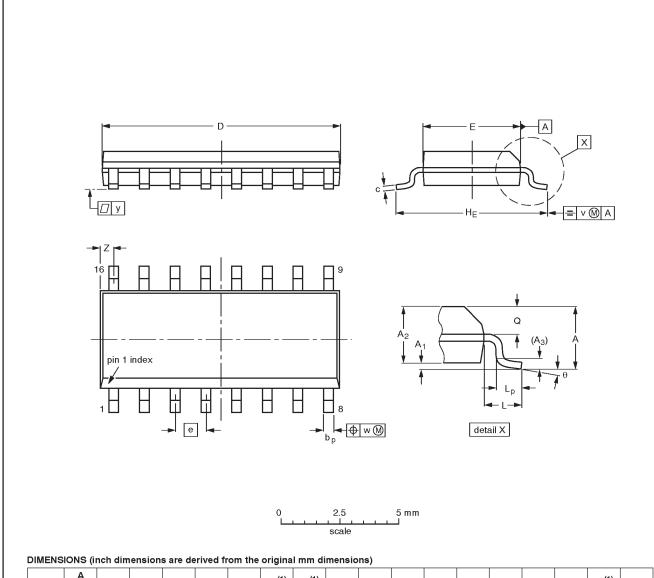
UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

scale

10 mm

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	ON IEC JEDEC EIAJ		PROJECTION	ISSUE DATE	
SOT38-4					92-11-17 95-01-14

Quad bilateral latches

74LV4316

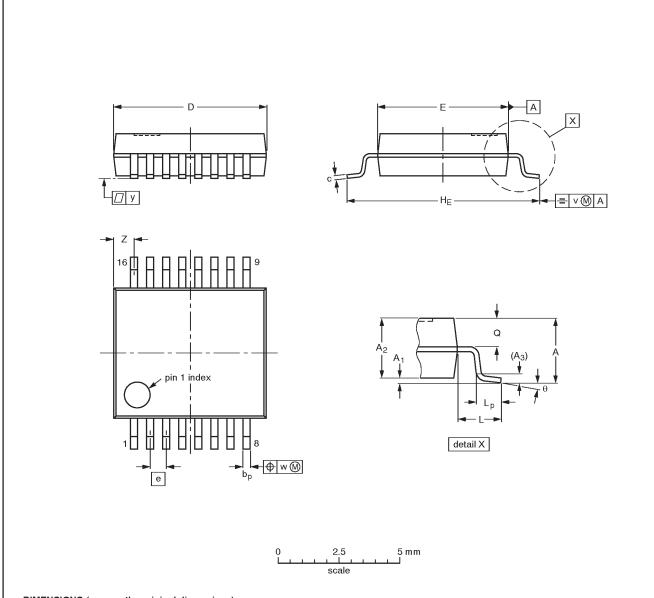
SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	٦	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.0098 0.0039		0.01	l	0.0098 0.0075	0.39 0.38	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT109-1	076E07S	MS-012AC			91-08-13 95-01-23

Quad bilateral latches

74LV4316

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

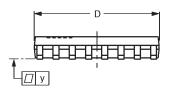
SOT338-1

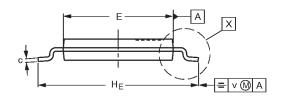
DIMENSIONS (mm are the original dimensions)

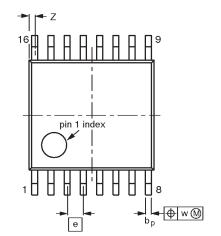
UNIT	A max.	A ₁	A ₂	A ₃	рb	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

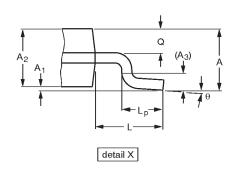
Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT338-1		MO-150AC				94-01-14 95-02-04	


Quad bilateral latches


74LV4316


TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

DIMENSIONS (mm are the original dimensions)

							-,												
ι	TINU	A max.	Α1	A ₂	А3	bp	c	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1930E DATE
SOT403-1		MO-153				-94-07-12- 95-04-04

Quad bilateral latches

74LV4316

NOTES

Quad bilateral switches

74LV4316

DEFINITIONS							
Data Sheet Identification	Product Status	Definition					
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.					
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Phillips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.					
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.					

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act.

© Copyright Philips Electronics North America Corporation 1998

All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-04663

Let's make things better.

Philips Semiconductors

