
DISCRETE SEMICONDUCTORS

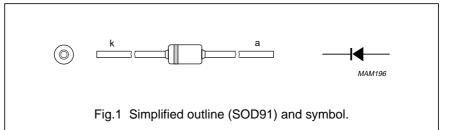
Product specification Supersedes data of 1996 May 24 1996 Sep 19

Product specification

BYD71 series

Ultra fast low-loss controlled avalanche rectifiers

FEATURES


- · Glass passivated
- High maximum operating temperature
- · Low leakage current
- · Excellent stability
- Guaranteed avalanche energy absorption capability
- Available in ammo-pack.

DESCRIPTION

Cavity free cylindrical SOD91 glass package through Implotec^{TM(1)} technology. This package is

hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

(1) Implotec is a trademark of Philips.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage				
	BYD71A		_	50	V
	BYD71B		_	100	V
	BYD71C		_	150	V
	BYD71D		_	200	V
	BYD71E		_	250	V
	BYD71F		_	300	V
	BYD71G		_	400	V
V _R	continuous reverse voltage				
	BYD71A		-	50	V
	BYD71B		_	100	V
	BYD71C		_	150	V
	BYD71D		-	200	V
	BYD71E		_	250	V
	BYD71F		_	300	V
	BYD71G		_	400	V
I _{F(AV)}	average forward current	$T_{tp} = 55 \ ^{\circ}C$; lead length = 10 mm;			
	BYD71A to D	see Figs 2 and 3;	_	0.56	A
	BYD71E to G	averaged over any 20 ms period; see also Figs 10 and 11	_	0.54	А
I _{F(AV)}	average forward current	T _{amb} = 60 °C; PCB mounting (see			
	BYD71A to D	Fig.16); see Figs 4 and 5;	-	0.43	A
	BYD71E to G	averaged over any 20 ms period; see also Figs 10 and 11	_	0.41	A

BYD71 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{FRM}	repetitive peak forward current	T_{tp} = 55 °C; see Figs 6 and 7			
	BYD71A to D		_	4.7	A
	BYD71E to G		_	5.0	A
I _{FRM}	repetitive peak forward current	T_{amb} = 60 °C; see Figs 8 and 9			
	BYD71A to D		-	3.7	A
	BYD71E to G		-	3.9	A
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave;	_	7	A
		$T_j = T_{j max}$ prior to surge; $V_R = V_{RRMmax}$			
P _{RSM}	non-repetitive peak reverse power dissipation	t = 20 μ s half sine wave; T _j = T _{j max} prior to surge			
	BYD71A to D		_	250	w
	BYD71E to G		_	150	w
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature		-65	+175	°C

ELECTRICAL CHARACTERISTICS

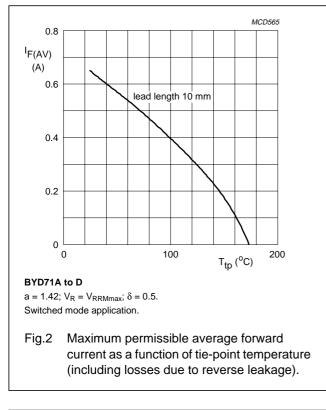
 T_j = 25 °C unless otherwise specified.

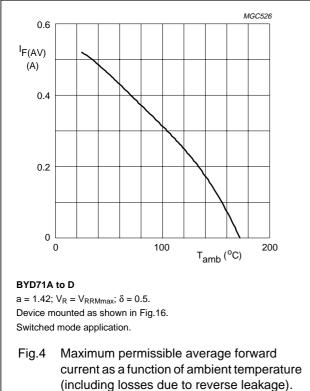
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 0.5 \text{ A}; T_j = T_{j \text{ max}};$				
	BYD71A to D	see Figs 12 and 13	_	_	0.84	V
	BYD71E to G		_	-	0.90	V
V _F	forward voltage	I _F = 0.5 A;				
	BYD71A to D	see Figs 12 and 13	_	-	1.05	V
	BYD71E to G		_	-	1.11	V
V _{(BR)R}	reverse avalanche breakdown voltage	I _R = 0.1 mA				
	BYD71A		55	-	-	V
	BYD71B		110	-	-	V
	BYD71C		165	-	-	V
	BYD71D		220	-	-	V
	BYD71E		275	-	-	V
	BYD71F		330	-	-	V
	BYD71G		440	-	-	V
I _R	reverse current	V _R = V _{RRMmax} ; see Fig 14	-	_	1	μA
		$V_R = V_{RRMmax};$ T _j = 165 °C; see Fig 14	-	_	75	μA
t _{rr}	reverse recovery time	when switched from				
	BYD71A to D	$I_F = 0.5 \text{ A to } I_R = 1 \text{ A};$	-	_	25	ns
	BYD71E to G	measured at I _R = 0.25 A see Fig 18	_	_	50	ns

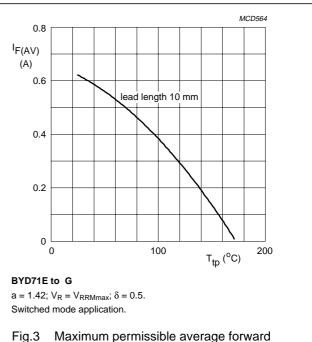
BYD71 series

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
C _d	diode capacitance	f = 1 MHz; V _R = 0 V;				
	BYD71A to D	see Fig.15	-	25	_	pF
	BYD71E to G		_	20	_	pF
$\left \frac{dI_{R}}{dt}\right $	maximum slope of reverse recovery current BYD71A to D BYD71E to G	when switched from $I_F = 1 A$ to $V_R \ge 30 V$ and $dI_F/dt = -1 A/\mu s$; see Fig.17		_	4 5	A/μs A/μs

THERMAL CHARACTERISTICS


SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	180	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	250	K/W


Note


1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.16. For more information please refer to the *"General Part of associated Handbook"*.

BYD71 series

GRAPHICAL DATA

ig.3 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

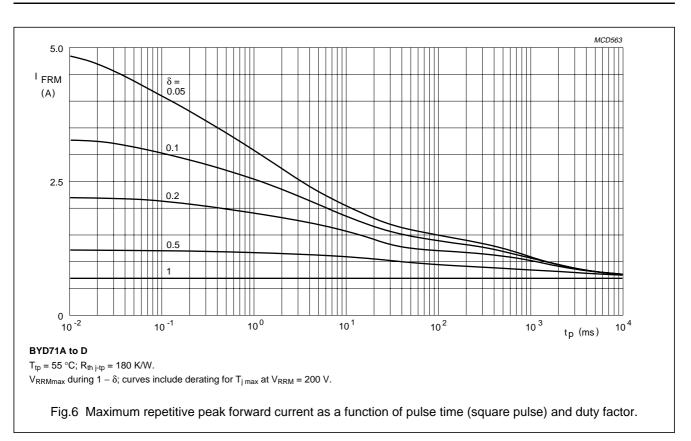



Fig.5 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

BYD71 series

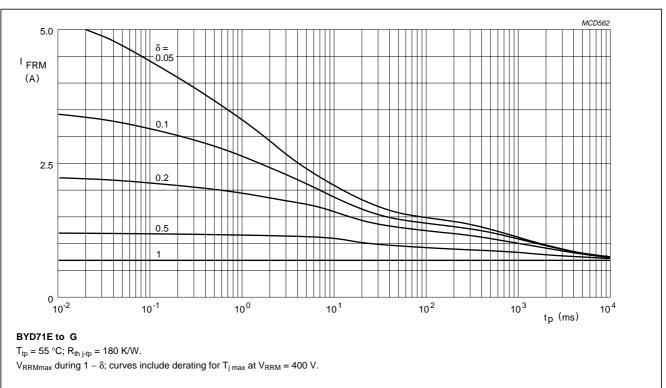


Fig.7 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

BYD71 series

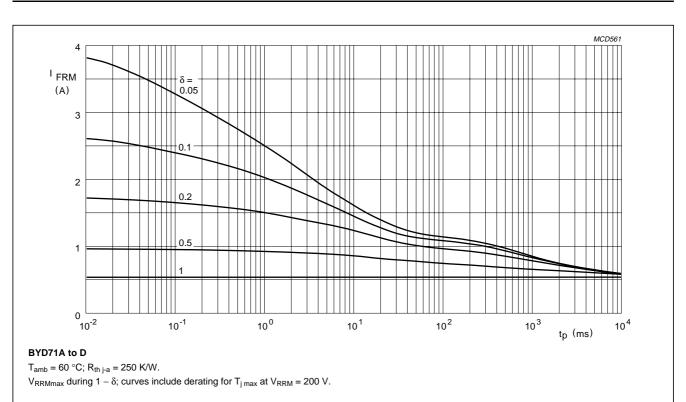


Fig.8 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

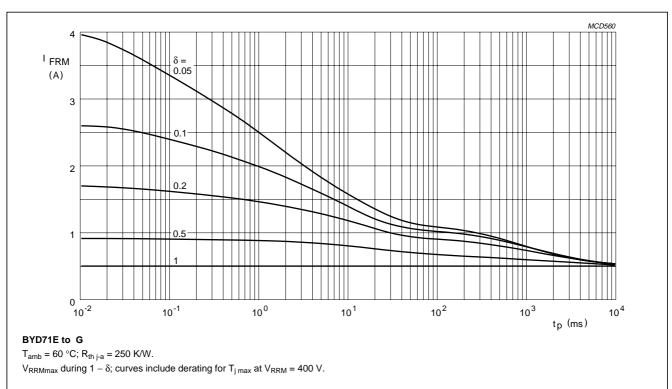
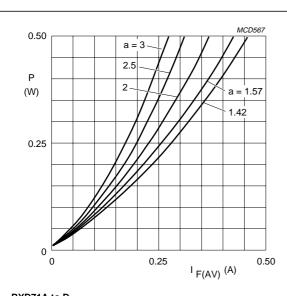
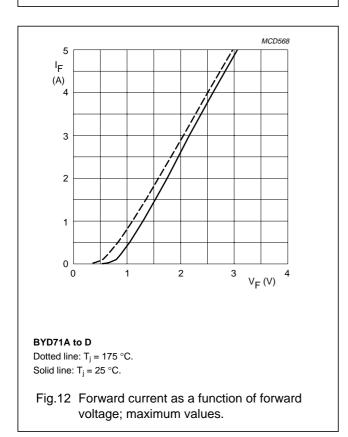
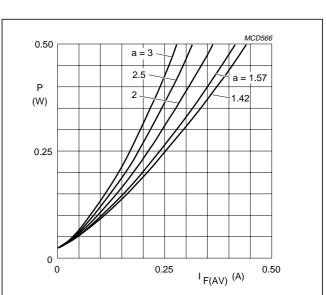



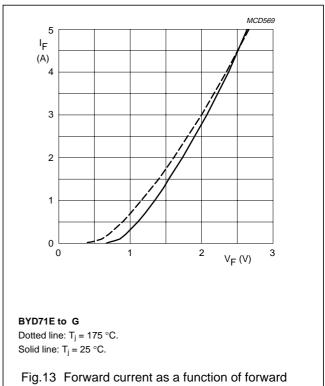
Fig.9 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.


BYD71 series



BYD71A to D

 $a = I_{F(RMS)} / I_{F(AV)}; \, V_R = V_{RRMmax}; \, \delta = 0.5. \label{eq:result}$


Fig.10 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

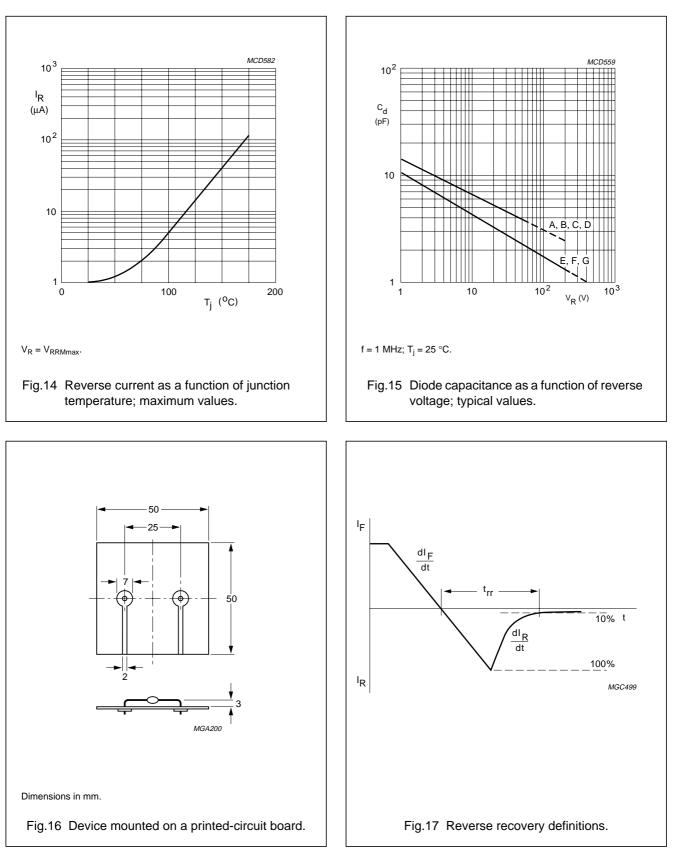
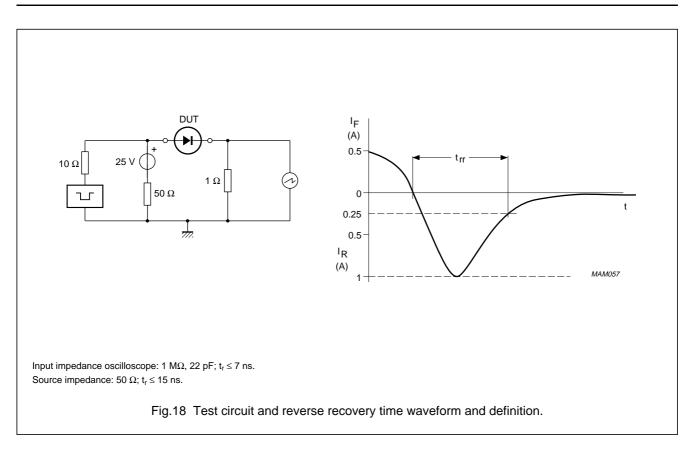

BYD71E to G $a = I_{F(RMS)}/I_{F(AV)}; V_{R} = V_{RRMmax}; \delta = 0.5.$

Fig.11 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.



voltage; maximum values.

BYD71 series

BYD71 series

BYD71 series

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status				
Objective specification This data sheet contains target or goal specifications for product development.				
Preliminary specification	Preliminary specification This data sheet contains preliminary data; supplementary data may be published later			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application information				
Where application information is given, it is advisory and does not form part of the specification.				

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.