DESCRIPTION

The SCN2652/68652 Multi-Protocol Communications Controller (MPCC) is a monolithic n-channel MOS LSI circuit that formats, transmits and receives synchronous serial data while supporting bit-oriented or byte control protocols. The chip is TTL compatible, operates from a single +5 V supply, and can interface to a processor with an 8 or 16-bit bidirectional data bus.

APPLICATIONS

- Intelligent terminals
- Line controllers
- Network processors
- Front end communications
- Remote data concentrators
- Communication test equipment
- Computer to computer links

FEATURES

- DC to 2Mbps data rate
- Bit-oriented protocols (BOP): SDLC, ADCCP, HDLC
- Byte-control protocols (BCP): DDCMP, BISYNC (external CRC)
- Programmable operation
- 8 or 16-bit tri-state data bus
- Error control - CRC or VRC or none
- Character length - 1 to 8 bits for BOP or 5 to 8 bits for BCP
- SYNC or secondary station address comparison for BCP-BOP
- Idle transmission of SYNC/FLAG or MARK for BCP-BOP
- Automatic detection and generation of special BOP control sequences, i.e., FLAG, ABORT, GA
- Zero insertion and deletion for BOP
- Short character detection for last BOP data character
- SYNC generation, detection, and stripping for BCP
- Maintenance mode for self-testing
- TTL compatible
- Single +5 V supply

PIN CONFIGURATION

ORDERING CODE

PACKAGES	$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 5 \%$		DWG \#
	Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	
40-Pin Ceramic Dual In-Line Package (DIP)	SCN2652AC2F40 / SCN68652AC2F40		0590B
40-Pin Plastic Dual In-Line Package (DIP)	SCN2652AC2N40 / SCN68652AC2N40	Contact Factory	SOT129-1
44-Pin Square Plastic Lead Chip Carrier (PLCC)	SCN2652AC2A44 / SCN68652AC2A44	Contact Factory	SOT187-2

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Operating ambient temperature ${ }^{2}$	Note 4	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	
$\mathrm{~V}_{\mathrm{CC}}$	All inputs with respect to GND^{3}	-0.3 to +7	${ }^{\circ} \mathrm{C}$

NOTES

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operation sections of this specification is not implied.
2. For operating at elevated temperatures the device must be derated based on $+150^{\circ} \mathrm{C}$ maximum junction temperature.
3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.
4. Parameters are valid over operating temperature range unless otherwise specified. See ordering code table for applicable temperature range and operating supply range.

BLOCK DIAGRAM

PIN DESCRIPTION

MNEMONIC	PIN NO.	TYPE	NAME AND FUNCTION
DB15-DB00	$\begin{aligned} & 17-10 \\ & 24-31 \end{aligned}$	I/O	Data Bus: DB07-DB00 contain bidirectional data while DB15-DB08 contain control and status information to or from the processor. Corresponding bits of the high and low order bytes can be wire OR'ed onto an 8-bit bus. The data bus is floating if either CE or DBEN are low.
A2-A0	19-21	I	Address Bus: A2-A0 select internal registers. The four 16-bit registers can be addressed on a word or byte basis. See Register Address section.
BYTE	22	1	Byte: Single byte (8-bit) data bus transfers are specified when this input is high. A low level specifies 16-bit data bus transfers.
CE	1	I	Chip Enable: A high input permits a data bus operation when DBEN is activated.
R/W	18	1	Read/Write: R/W controls the direction of data bus transfer. When high, the data is to be loaded into the addressed register. A low input causes the contents of the addressed register to be presented on the data bus.
DBEN	23	1	Data Bus Enable: After A2-A0, CE, BYTE and $\overline{\mathrm{R}} / \mathrm{W}$ are set up, DBEN may be strobed. During a read, the 3-state data bus (DB) is enabled with information for the processor. During a write, the stable data is loaded into the addressed register and TxBE will be reset if TDSR was addressed.
RESET	33	I	Reset: A high level initializes all internal registers (to zero) and timing.
MM	40	1	Maintenance Mode: MM internally gates TxSO back to RxSI and TxC to RxC for off line diagnostic purposes. The RxC and RxSI inputs are disabled and TxSO is high when MM is asserted.
RxE	8	I	Receiver Enable: A high level input permits the processing of RxSI data. A low level disables the receiver logic and initializes all receiver registers and timing.
RxA	5	0	Receiver Active: RxA is asserted when the first data character of a message is ready for the processor. In the BOP mode this character is the address. The received address must match the secondary station address if the MPCC is a secondary station. In BCP mode, if strip-SYNC (PCSAR ${ }_{13}$) is set, the first non-SYNC character is the first data character; if strip-SYNC is zero, the character following the second SYNC is the first data character. In the BOP mode, the closing FLAG resets RxA. In the BCP mode, RxA is reset by a low level at RxE.
RxDA*	6	0	Receiver Data Available: RxDA is asserted when an assembled character is in RDSR $_{\mathrm{L}}$ and is ready to be presented to the processor. This output is reset when $\operatorname{RDSR}_{\mathrm{L}}$ is read.
RxC	2	1	Receiver Clock: RxC (1X) provides timing for the receiver logic. The positive going edge shifts serial data into the RxSR from RxSI.
S/F	4	0	SYNC/FLAG: S/F is asserted for one RxC clock time when a SYNC or FLAG character is detected.
RxSA*	7	0	Receiver Status Available: RxSA is asserted when there is a zero to one transition of any bit in RDSR H_{H} except for RSOM. It is cleared when RDSR ${ }_{H}$ is read.
RxSI	3	I	Receiver Serial Input: RxSI is the received serial data. Mark = '1', space = '0'.
TxE	37	1	Transmitter Enable: A high level input enables the transmitter data path between TDSR ${ }_{L}$ and TxSO. At the end of a message, a low level input causes TxSO = 1 (mark) and TxA = 0 after the closing FLAG (BOP) or last character (BCP) is output on TxSO.
TxA	34	0	Transmitter Active: TxA is asserted after TSOM (TDSR ${ }_{8}$) is set and TxE is raised. This output will reset when TxE is low and the closing FLAG (BOP) or last character (BCP) has been output on TxSO.
TxBE*	35	0	Transmitter Buffer Empty: TxBE is asserted when theTDSR is ready to be loaded with new control information or data. The processor should respond by loading theTDSR which resets TxBE.
TxU*	36	0	Transmitter Underrun: TxU is asserted during a transmit sequence when the service of TxBE has been delayed for one character time. This indicates the processor is not keeping up with the transmitter. Line fill depends on PCSAR ${ }_{11}$. TxU is reset by RESET or setting of TSOM (TDSR ${ }_{8}$), synchronized by the falling edge of TxC.
TxC	39	1	Transmitter Clock: TxC (1X) provides timing for the transmitter logic. The positive going edge shifts data out of the TxSR to TxSO.
TxSO	38	0	Transmitter Serial Output: TxSO is the transmitted serial data. Mark = '1, space = '0'.
V_{CC}	32	I	+5V: Power supply.
GND	9	1	Ground: OV reference ground.

*Indicates possible interrupt signal

Table 1. Register Access

REGISTERS		NO. OF BITS	DESCRIPTION*
Addressable			
PCSAR	Parameter control sync/ address register	16	PCSAR $_{H}$ and PCR contain parameters common to the receiver and transmitter. PCSAR ${ }_{L}$ contains a programmable SYNC character (BCP) or secondary station address (BOP).
PCR	Parameter control register	8	$\mathrm{RDSR}_{\mathrm{H}}$ contains receiver status information.
RDSR	Receive data/status register	16	RDSR ${ }_{L}=$ RxDB contains the received assembled character.
TDSR	Transmit data/status register	16	TDSR $_{\mathrm{H}}$ contains transmitter command and status information. TDSRL $=$ TxDB contains the character to be transmitted
Non-Addressable			
CCSR	Control character shift register	8	These registers are used for character assembly (CSSR, HSR, RxSR), disassembly (TxSR), and CRC accumulation/generation (RxCRC, TxCRC).
HSR	Holding shift register	16	
RxSR	Receiver shift register	8	
TxSR	Transmitter shift register	8	
RxCRC	Receiver CRC accumulation register	16	
TxCRC	Transmitter CRC generation register	16	

NOTES:
*H = High byte - bits $15-8$
L = Low byte - bits $7-0$
Table 2. Error Control

CHARACTER	DESCRIPTION
FCS	Frame check sequence is transmitted/received as 16 bits following the last data character of a BOP message. The divisor is usually CRC-CCITT $\left(X^{16}+X^{12}+X^{5}+1\right)$ with dividend preset to 1's but can be other wise determined by ECM. The inverted remainder is transmitter as the FCS.
BCC	Block check character is transmitted/received as two successive characters following the last data character of a BCP message. The polynomial is CRC-16 (X'16 $\left.+X^{15}+X^{2}+1\right)$ or CRC-CCITT with dividend preset to 0's (as specified by ECM). The true remainder is transmitted as the BCC.

Table 3. Special Characters

OPERATION	BIT PATTERN	FUNCTION
BOP		
FLAG	01111110	Frame message
ABORT	11111111 generation	Terminate communication
	01111111 detection	
GA	01111111	Terminate loop mode repeater function
Address	$\left(\mathrm{PCSAR}_{\mathrm{L}}\right)^{1}$	Secondary station address
BCP		
SYNC	(PCSAR L) or $(T x D B)^{2}$ generation	Character synchronization

NOTES:

1. ()$=$ contents of.
2. For IDLE $=0$ or 1 respectively.

NOTE:
Refer to Register Formats for mnemonics and description.

Figure 2. MPCC Receiver Data Path

Figure 3. MPCC Transmitter Data Path

FUNCTIONAL DESCRIPTION

The MPCC can be functionally partitioned into receiver logic, transmitter logic, registers that can be read or loaded by the processor, and data bus control circuitry. The register bit formats are shown in Figure 1 while the receiver and transmitter data paths are depicted in Figures 2 and 3.

RECEIVER OPERATION

General

After initializing the parameter control registers (PCSAR and PCR), the RxE input must be set high to enable the receiver data path. The serial data on the RxSI is synchronized and shifted into an 8-bit Control Character Shift Register (CCSR) on the rising edge of RxC. A comparison between CCSR contents and the FLAG (BOP) or SYNC (BCP) character is made until a match is found. At that time, the S/F output is asserted for one RxC time and the 16-bit Holding Shift Register (HSR) is enabled. The receiver then operates as described below.

BOP Operation

A flowchart of receiver operation in BOP mode appears in Figure 4. Zero deletion (after five ones are received) is implemented on the received serial data so that a data character will not be interpreted as a FLAG, ABORT, or GA. Bits following the FLAG are shifted through the CCSR, HSR, and into the Receiver Shift Register (RxSR). A character will be assembled in the RxSR and transferred to the RDSR $_{\mathrm{L}}$ for presentation to the processor. At that time the RxDA output will be asserted and the processor must take the character no later than one RxC time after the next character is assembled in the RxSR. If not, an overrun ($\operatorname{RDSR}_{11}=1$) will occur and succeeding characters will be lost.

The first character following the FLAG is the secondary station address. If the MPCC is a secondary station $\left(\right.$ PCSAR $\left._{12}=1\right)$, the contents of RxSR are compared with the address stored in PCSAR ${ }_{L}$. A match indicates the forthcoming message is intended for the station; the RxA output is asserted, the character is loaded into RDSR ${ }_{\mathrm{L}}$, RxDA is asserted and the Receive Start of Message bit (RSOM) is set. No match indicates that another station is being addressed and the receiver searches for the next FLAG.

If the MPCC is a primary station, $\left(\operatorname{PCSAR}_{12}=0\right)$, no secondary address check is made; RxA is asserted and RSOM is set once the first non-FLAG character has been loaded into RDSR ${ }_{L}$ and RxDA has been asserted. Extended address field can be supported by software if PCSAR $12=0$.

When the 8 bits following the address character have been loaded into RDSR $_{\mathrm{L}}$ and RxDA has been asserted, RSOM will be cleared. The processor should read this 8-bit character and interpret it as the Control field

Received serial data that follows is read and interpreted as the information field by the processor. It will be assembled into character lengths as specified by PCR 8-10 10. As before, RxDA is asserted each time a character has been transferred into $\operatorname{RDSR}_{\mathrm{L}}$ and is cleared when RDSR $_{\mathrm{L}}$ is read by the processor. RDSR $_{H}$ should only be read when RxSA is asserted. This occurs on a zero to one transition of any bit in RDSR ${ }_{H}$ except for RSOM. RxSA and all bits in RDSR ${ }_{H}$ except RSOM are cleared when RDSR $_{H}$ is read. The processor
should check RDSR $_{9-15}$ each time RxSA is asserted. If RDSR $_{9}$ is set, then RDSR ${ }_{12-15}$ should be examined

Receiver character length may be changed dynamically in response to RxDA: read the character in RxDB and write the new character length into RxCL. The character length will be changed on the next receiver character boundary. A received residual (short) character will be transferred into RxDB after the previous character in RxDB has been read, i.e. there will not be an overrun. In general the last two characters are protected from overrun.
The CRC-CCITT, if specified by PCSAR 8_{8-10}, is accumulated in RxCRC on each character following the FLAG. When the closing FLAG is detected in the CCSR, the received CRC is in the 16-bit HSR. At that time, the Receive End of Message bit (REOM) will be set; RxSA and RxDA will be asserted. The processor should read the last data character in RDSR $_{\mathrm{L}}$ and the receiver status in RDSR $_{9-15}$. If RDSR $_{15}=1$, there has been a transmission error; the accumulated CRC-CCITT is incorrect. If RDSR 12-14 $^{=1} 0$, last data character is not of prescribed length. Neither the received CRC nor closing FLAG are presented to the processor. The processor may drop RxE or leave it active at the end of the received message.

RxBCP Operation

The operation of the receiver in BCP mode is shown in Figure 5. The receiver initially searches for two successive SYNC characters, of length specified by PCR_{8-10}, that match the contents of $\mathrm{PCSAR}_{\mathrm{L}}$. The next non-SYNC character or next SYNC character, if stripping is not specified $\left(\right.$ PCSAR $\left._{13}=0\right)$, causes RxA to be asserted and enables the receiver data path. Once enabled, all characters are assembled in RxSR and loaded into RDSR $_{\mathrm{L}}$. RxDA is active when a character is available in RDSR $_{L}$. RxSA is active on a 0 to 1 transition of any bit in RDSR $_{\mathrm{H}}$. The signals are cleared when RDSRI or RDSR $_{H}$ are read respectively.

If CRC-16 error control is specified by PCSAR $8-10$, the processor must determine the last character received prior to the CRC field. When that character is loaded into RDSR $_{L}$ and RxDA is asserted, the received CRC will be in CCSR and HSR ${ }_{L}$. To check for a transmission error, the processor must read the receiver status $\left(\right.$ RDSR $\left._{H}\right)$ and examine RDSR_{15}. This bit will be set for one character time if an error free message has been received. If $\operatorname{RDSR}_{15}=0$, the CRC-16 is in error. The state of RDSR $_{15}$ in BCP CRC mode does not set RxSA. Note that this bit should be examined only at the end of a message. The accumulated CRC will include all characters starting with the first non-SYNC character if $\operatorname{PCSAR}_{13}=1$, or the character after the opening two SYNCs if PCSAR $_{13}=0$. This necessitates external CRC generation/checking when supporting IBM's

BISYNC. This can be accomplished using the Philips
Semiconductors SCN2653 Polynomial Generator/Checker. See Typical Applications.

If VRC has been selected for error control, parity (odd or even) is regenerated on each character and checked when the parity bit is received. A discrepancy causes RDSR $_{15}$ to be set and RxSA to be asserted. This must be sensed by the processor. The received parity bit is stripped before the character is presented to the processor.

When the processor has read the last character of the message, it should drop RxE which disables the receiver logic and initializes all receiver registers and timing.

Figure 4. BOP Receive

TRANSMITTER OPERATION

General

After the parameter control registers (PCSAR and PCR) have been initialized, TxSO is held at mark until TSOM (TDSR 8) is set and TxE is raised. Then, transmitter operation depends on protocol mode.

TxBOP Operation

Transmitter operation for BOP is shown in Figure 6. A FLAG is sent after the processor sets the Transmit Start of Message bit (TSOM) and raises TxE. The FLAG is used to synchronize the message that follows. TxA will also be asserted. When TxBE is asserted by the

MPCC, the processor should load TDSR ${ }_{L}$ with the first character of the message. TSOM should be cleared at the same time TDSR $_{L}$ is loaded (16-bit data bus) or immediately thereafter (8-bit data bus). FLAGS are sent as long as TSOM = 1. For counting the number of FLAGs, the processor should reassert TSOM in response to the assertion of TxBE.All succeeding characters are loaded into TDSR by the processor when TxBE = 1. Each
character is serialized in TxSR and transmitted on TxSO. Internal zero insertion logic stuffs a "0" into the serial bit stream after five successive " 1 s " are sent. This insures a data character will not match a FLAG, ABORT, or GA reserved control character. As each character is transmitted, the Frame Check Sequence (FCS) is generated as specified by Error Control Mode (PCSAR 8-10 10). The FCS should be the CRC-CCITT polynomial ($X^{16}+X^{12}+X^{5}+1$) preset to 1 s . If an underrun occurs (processor is not keeping up with the transmitter), TxU and $\operatorname{TERR}\left(\mathrm{TDSR}_{15}\right)$ will be asserted with ABORT or FLAG used as the TxSO line fill depending on the state of IDLE (PCSAR ${ }_{11}$). The processor must set TSOM to reset the underrun condition. To retransmit the message, the processor should proceed with the normal start of message sequence.
A residual character of 1 to 7 bits may be transmitted at the end of the information field. In response to TxBE, write the residual character length into TxCL and load TxDB with the residual character. Dynamic alteration of character length should be done in exactly the same sequence. The character length will be changed on the next transmit character boundary.
After the last data character has been loaded into $\operatorname{TDSR}_{\mathrm{L}}$ and sent to TxSR (TxBE = 1), the processor should set TEOM (TDSR ${ }_{9}$). The MPCC will finish transmitting the last character followed by the FCS and the closing FLAG. The processor should clear TEOM and drop TxE when the next TxBE is asserted. This corresponds to the start of closing FLAG transmission. When TxE has been dropped. TxA will be low $11 / 2$ bit times after the last bit of the closing FLAG has been transmitted. TxSO will be marked after the closing FLAG has been transmitted.
If TxE and TEOM are high, the transmitter continues to send FLAGs. The processor may initiate the next message by resetting TEOM and setting TSOM, or by loading TDSR ${ }_{L}$ with a data character and then simply resetting TSOM (without setting TSOM).

TxBCP Operation

Transmitter operation for BCP mode is shown in Figure 7. TxA will be asserted after TSOM = 1 and TxE is raised. At that time SYNC characters are sent from PCSAR $_{\mathrm{L}}$ or $\operatorname{TDSR}_{\mathrm{L}}$ (IDLE $=0$ or 1) as long as TSOM $=1$. TxBE is asserted at the start of transmission of the first SYNC character. For counting the number of SYNCs, the processor should reassert TSOM in response to the assertion of TxBE. When TSOM $=0$ transmission is from TDSR $_{\mathrm{L}}$, which must be loaded with characters from the processor each time TxBE is asserted. If this loading is delayed for more than one character time, an underrun results: TxU and TERR are asserted and the

TxSO line fill depend on IDLE (PCSAR ${ }_{11}$). The processor must set TSOM and retransmit the message to recover. This is not compatible with IBM's BISYNC, so that the user must not underrun when supporting that protocol.

CRC-16, if specified by PCSAR $_{8-10}$, is generated on each character transmitted from $\mathrm{TDSR}_{\mathrm{L}}$ when $\mathrm{TSOM}=0$. The processor must set TEOM = 1 after the last data character has been sent to TxSR (TxBE = 1). The MPCC will finish transmitting the last data character and the CRC-16 field before sending SYNC characters which are transmitted as long as TEOM $=1$. If SYNCs are not desired after CRC-16 transmission, the processor should clear TEOM and lower TxE when the TxBE corresponding to the start of CRC-16 transmission is asserted. When TEOM $=0$, the line is marked and a new message may be initiated by setting TSOM and raising TxE.
If VRC is specified, it is generated on each data character and the data character length must not exceed 7 bits. For software LRC or CRC, TEOM should be set only if SYNC's are required at the end of the message block.
SPECIAL CASE: The capability to transmit 16 spaces is provided for line turnaround in half duplex mode or for a control recovery situation. This is achieved by setting TSOM and TEOM, clearing TEOM when TxBE = 1, and proceeding as required.

PROGRAMMING

Prior to initiating data transmission or reception, PCSAR and PCR must be loaded with control information from the processor. The contents of these registers (see Register Format section) will configure the MPCC for the user's specific data communication environment. These registers should be loaded during power-on initialization and after a reset operation. They can be changed at any time that the respective transmitter or receiver is disabled.

The default value for all registers is zero. This corresponds to BOP, primary station mode, 8 -bit character length, $\mathrm{FCS}=\mathrm{CRC}-\mathrm{CCITT}$ preset to 1s.
For BOP mode the character length register (PCR) may be set to the desired values during system initialization. The address and control fields will automatically be 8 -bits. If a residual character is to be transmitted, TxCL should be changed to the residual character length prior to transmission of that character.

DATA BUS CONTROL

The processor must set up the MPCC register address (A2-A0), chip enable (CE), byte select (BYTE), and read/write (\bar{R} / W) inputs before each data bus transfer operation.
During a read operation ($\bar{R} / W=0$), the leading edge of DBEN will initiate an MPCC read cycle. The addressed register will place its contents on the data bus. If $\mathrm{BYTE}=1$, the 8 -bit byte is placed on DB15-08 or DB07-00 depending on the H/L status of the register addressed. Unused bits in RDSR $_{L}$ are zero. If $B Y T E=0$, all 16 bits (DB15-00) contain MPCC information. The trailing edge of DBEN will reset RxDA and/or RxSA if $\operatorname{RDSR}_{\mathrm{L}}$ or RDSR $_{H}$ is addressed respectively.
DBEN acts as the enable and strobe so that the MPCC will not begin its internal read cycle until DBEN is asserted.

During a write operation ($\overline{\mathrm{R}} / \mathrm{W}=1$), data must be stable on DB_{15-08} and/or DB_{07-00} prior to the leading edge of DBEN. The stable data is strobed into the addressed register by DBEN. TxBE will be cleared if the addressed register was TDSR $_{H}$ or TDSR $_{\mathrm{L}}$.

NOTES:

1. Test made every RxC time.
2. Test made on Rx character boundary.

Figure 5. BCP Receive

*GA will be transmitted if TGA is set together with TEOM.
Figure 6. BOP Transmit

Figure 7. BCP Transmit

Table 4. MPCC Register Addressing

NOTES:

* PCR lower byte does not exist. It will be all "0"s when read.
** Corresponding high and low order pins must be tied together.

Table 5. Parameter Control Register (PCR)-(R/W)

BIT	NAME	MODE	FUNCTION
00-07	Not Defined		
08-10	RxCL	BOP/BCP	Receiver character length is loaded by the processor when RxCLE $=0$. The character length is valid after transmission of single byte address and control fields have been received.
11	RxCLE	BOP/BCP	Receiver character length enable should be zero when the processor loads RxCL. The remaining bits of PCR are not affected during loading. Always 0 when read.
12	TxCLE	BOP/BCP	Transmitter character length enable should be zero when the processor loads TxCL. The remaining bits of PCR are not affected during loading. Always 0 when read.
13-15	TxCL	BOP/BCP	Transmitter character length is loaded by the processor when TxCLe $=0$. Character bit length specification format is identical to RxCL. It is valid after transmission of single byte address and control fields.

Table 6. Parameter Control SYNC/Address Register (PCSAR)-(R/W)

BIT	NAME	MODE	FUNCTION
00-07	S/AR	$\begin{aligned} & \mathrm{BOP} \\ & \mathrm{BCP} \end{aligned}$	SYNC/address register. Contains the secondary station address if the MPCC is a secondary station. The contents of this register is compared with the first received non-FLAG character to determine if the message is meant for this station. SYNC character is loaded into this register by the processor. It is used for receive and transmit bit synchronization with bit length specified by RxCL and TxCL.
08-10	ECM	BOP/BCP	Error Control Mode $\mathbf{1 0}$ $\mathbf{9}$ $\mathbf{8}$ Suggested Mode Char. length CRC-CCITT preset to 1's 0 0 0 BOP $1-8$ CRC-CCITT preset to 0's 0 0 1 BCP 8 Not used 0 1 0 - CRC-16 preset to 0's 0 1 1 BCP 8 VRC odd 1 0 0 BCP $5-7$ VRC even 1 0 1 BCP $5-7$ Not used 1 1 0 - No error control 1 1 1 BCP/BOP $5-8$ ECM should be loaded by the processor during initialization or when both data paths are idle.
11	IDLE	$\begin{aligned} & \mathrm{BOP} \\ & \mathrm{BCP} \end{aligned}$	Determines line fill character to be used if transmitter underrun occurs (TxU asserted and TERR set) and transmission of special characters for BOP/BCP. $\operatorname{IDLE}=0$, transmit ABORT characters during underrun and when $\operatorname{TABORT}=1$. IDLE $=1$, transmit FLAG characters during underrun and when $\operatorname{TABORT}=1$. IDLE $=0$ transmit initial SYNC characters and underrun line fill characters from theS/AR. IDLE = 1 transmit initial SYNC characters from TxDB and marks TxSO during underrun.
12	SAM	BOP	Secondary Address Mode $=1$ if the MPCC is a secondary station. This facilitates automatic recognition of the received secondary station address. When transmitting, the processor must load the secondary address into TxDB. SAM $=0$ inhibits the received secondary address comparison which serves to activate the receiver after the first non-FLAG character has been received.
13	SS/GA	BOP BCP	Strip SYNC/Go Ahead. Operation depends on mode. SS/GA = 1 is used for loop mode only and enables GA detection. When a GA is detected as a closing character, REOM and RAB/GA will be set and the processor should terminate the repeater function. SS/GA $=0$ is the normal mode which enables ABORT detection. It causes the receiver to terminate the frame upon detection of an ABORT or FLAG. SS/GA = 1, causes the receiver to strip SYNC's immediately following the first two SYNC's detected. SYNC's in the middle of a message will not be stripped. $\mathrm{SS} / \mathrm{GA}=0$, presents any SYNC's after the initial two SYNC's to the processor.
14	PROTO	$\begin{aligned} & \text { BOP } \\ & \text { BCP } \end{aligned}$	Determines MPCC Protocol mode $\begin{aligned} & \text { PROTO }=0 \\ & \text { PROTO }=1 \end{aligned}$
15	APA	BOP	All parties address. If this bit is set, the receiver data path is enabled by an address field of '11111111' as well as the normal secondary station address.

Table 7. Transmit Data/Status Register (TDSR) (R/W except TDSR15)

BIT	NAME	MODE	FUNCTION
00-07	TxDB	BOP/BCP	Transmit data buffer. Contains processor loaded characters to be serialized in TxSR and transmitted on TxSO.
08	TSOM	BOP BCP	Transmitter start of message. Set by the processor to initiate message transmission provided $T x E=1$. TSOM $=1$ generates FLAGs. When TSOM $=0$ transmission is from TxDB and FCS generation (if specified) begins. FCS, as specified by PCSAR 8-10 10, should be CRC-CCITT preset to 1's. TSOM $=1$ generates SYNCs from PCSAR $_{\mathrm{L}}$ or transmits from TxDB for IDLE $=0$ or 1 respectively. When TSOM $=0$ transmission is from TxDB and CRC generation (if specified) begins.
09	TEOM	$\begin{aligned} & \mathrm{BOP} \\ & \mathrm{BCP} \end{aligned}$	Transmit end of message. Used to terminate a transmitted message. TEOM = 1 causes the FCS and the closing FLAG to be transmitted following the transmission of the data character in TxSR. FLAGs are transmitted until TEOM $=0$. ABORT or GA are transmitted if TABORT or TGA are set when TEOM $=1$. TEOM $=1$ causes CRC-16 to be transmitted (if selected) followed by SYNCs from PCSAR L or TxDB (IDLE $=0$ or 1). Clearing TEOM prior to the end of CRC-16 transmission (when TxBE $=1$) causes TxSO to be marked following the CRC-16. TxE must be dropped before a new message can be initiated. If CRC is not selected, TEOM should not be set.
10	TABORT	BOP	Transmitter abort $=1$ will cause ABORT or FLAG to be sent (IDLE = 1 or 1) after the current character is transmitted. (ABORT = 11111111)
11	TGA	BOP	Transmit go ahead (GA) instead of FLAG when TEOM $=1$. This facilitates repeater termination in loop mode. $(G A=01111111)$
12-14	Not Defined		
15	TERR	Read only BOP $B C P$	Transmitter error = 1 indicates the TxDB has not been loaded in time (one character time $-1 / 2$ TxC period after TxBE is asserted) to maintain continuous transmission. TxU will be asserted to inform the processor of this condition. TERR is cleared by setting TSOM. See timing diagram. ABORT's or FLAG's are sent as fill characters (IDLE $=0$ or 1) SYNC's or MARK's are sent as fill characters (IDLE $=0$ or 1). For IDLE $=1$ the last character before underrun is not valid.

Table 8. Receiver Data/Status Register (RDSR)-(Read Only)

BIT	NAME	MODE	FUNCTION
$00-07$	RxDB	BOP/BCP	Receiver data buffer. Contains assembled characters from the RxSR. If VRC is specified, the parity bit is stripper.
08	RSOM	BOP	Receiver start of message $=1$ when a FLAG followed by a non-FLAG has been received and the latter character matches the secondary station if SAM $=1$. RxA will be asserted when RSOM $=1$. RSOM resets itself after one character time and has no affect on RxSA.
09	REOM	BOP	Receiver end of message $=1$ when the closing FLAG is detected and the last data character is loaded into RxDB or when an ABORT/GA character is received. REOM is cleared on reading RDSR
10	RAB/GA reset operation, or dropping of RxE.		

DC ELECTRICAL CHARACTERISTICS ${ }^{1,2}$

PARAMETER	TEST CONDITIONS	LIMITS			UNIT
		Min	Typ	Max	
 Input voltage $V_{\text {IL }}$ Low $V_{\text {IH }}$ High		2.0		0.8	V
Output voltage VOL Low $\mathrm{V}_{\mathrm{OH}} \quad \mathrm{High}$	$\begin{gathered} \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \end{gathered}$	2.4		0.4	V
$\mathrm{I}_{\text {CC }} \quad$ Power supply current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			150	mA
Leakage current $I_{\text {IL }}$ Input I_{OL} Output	$\begin{gathered} \mathrm{V}_{\text {IN }}=0 \text { to } 5.25 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \text { to } 5.25 \mathrm{~V} \end{gathered}$			10 10	$\mu \mathrm{A}$
Capacitance $\mathrm{C}_{\mathrm{IN}} \quad$ Input Cout Output	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{gathered}$			20 20	pF

AC ELECTRICAL CHARACTERISTICS ${ }^{1,2,3}$

PARAMETER	2MHz CLOCK			UNIT
	Min	Typ	Max	
Set-up and hold time				
$\mathrm{t}_{\text {ACS }} \quad$ Address/control set-up	50			
$t_{\text {ACH }}$ Address/control hold	0			
$t_{\text {DS }} \quad$ Data bus set-up (write)	50			ns
$t_{\text {DH }} \quad$ Data bus hold (write)	0			
$t_{\text {RXS }} \quad$ Receiver serial data set-up	150			
$t_{\text {RxH }}$ Receiver serial data hold	150			
Pulse width				
tres RESET	250			ns
t DBEN DBEN	250		m^{4}	
Delay Time				
$t_{D D} \quad$ Data bus (read)				ns
$\mathrm{t}_{\mathrm{TXD}} \quad$ Transmit serial data t tBEND DBEN to DBEN delay			250	ns
$t_{\text {DBEND }}$ DBEN to DBEN delay	200			
$\mathrm{t}_{\mathrm{DF}} \quad$ Data bus float time (read)			150	ns
$\mathrm{f} \quad$ Clock (RxC, TxC) frequency			2.0	MHz
tcLK1 Clock high (MM = 0)	165			
tcle2 \quad Clock high ($\mathrm{MM}=1$)	240			ns
tclko Clock low	240			

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified. See ordering code table for applicable temperature range and operating supply range.
2. All voltage measurements are referenced to ground. All time measurements are at 0.8 V or 2.0 V . Input voltage levels for testing are 0.4 V and 2.4 V .
3. Output load $C_{L}=100 \mathrm{pF}$.
4. $m=T x C$ low and applies to writing to TDSR_{H} only.

TIMING DIAGRAMS

RESET

TIMING DIAGRAMS (Continued)

TIMING DIAGRAMS (Continued)

NOTES:

1. TxBE goes low relative to the falling edge of DBEN corresponding to loading $\mathrm{TDSR}_{\mathrm{H} / L}$. It goes high one TxC before character transmission begins and also when TxA^{2} has been dropped
2. TxE can be dropped before resetting TEOM if TxBE (corresponding to the closing FLAG) is high. Alternatively TxE can remain high and a new message initiated.
3. TxA goes low after TxE has been dropped and $11 / 2$ TxC's after the last bit of the closing FLAG has been transmitted.

NOTE:

1. When SCN2652 generated CRC is not required. TEOM should only be set if SYNCs are to follow the message block. In that case, TxE should be dropped in response to TxBE (which corresponds to the start of transmission of the last character). When CRC is required, TxE must be dropped before CRC transmission is complete. Otherwise, the contents of TxDB will be shifted out on TxSO. This facilitates transmission of contiguous messages.

TIMING DIAGRAMS (Continued)

NOTES:

. TxU goes active relative to TxC falling edge if TxBE has not been serviced after $n-1 / 2 T x C$ times (where $n=$ transmit character length). TxU is reset on the TxC falling edge following assertion of the TSOM command.
2. An underrun will occur at the next character boundary if TEOM is reset and the transmitter remains enabled, unless the TSOM command is asserted or a character is loaded into
the TXDB. the TxDB.

TIMING DIAGRAMS (Continued)

NOTES:

1. At the end of a BOP message, RxSA goes high when FLAG detection (S/F 1) forces REOm to be set. Processor should read the last data character (RDSR $_{L}$) and status (RDSR_{H}) which resets RxDA and RxSA respectively. For $B C P$ end of message, RxSA may not be set and $S / F=0$. The processor should read the last data character and status.
2. RxE must be dropped for BCP with non-contiguous messages. It may be left on at the end of a BOP message (see BOP Receive Operation).
3. $R \times A$ is reset relative to the falling edge of $R x C$ after the closing FLAG of a BOP message ($R E O M=1$ and $R \times S A$ active.) or when $R \times E$ is dropped.

TYPICAL APPLICATIONS

NOTES:

1. Possible $\mu \mathrm{P}$ interrupt requests are: RxDA RxSA TxBE TxU
2. Other SCN2652 status signals and possible uses are S F line idle indicator, frame delimiter. RxA handshake on RxE, line turn around control. TxA handshake on TxE, line turn around control.
Line drivers/receivers (LD/LR) convert EIA to TTL voltages and vice-versa
3. RTS should be dropped after the CRC (BCP) or FLAG (BOP) has been transmitted. This forces CTS low and TxE low.
4. Corresponding high and low order bits of DB must be OR tied.

TYPICAL APPLICATIONS (Continued)

SYSTEM ADDRESS AND CONTROL BUS

For non-DMA operation TxBE and RxDA are set to the processor which then loads or reads data characters as required.

