## DATA SHEET

## TDA5634T <br> 9 V UHF mixer/oscillator for TV and VCR tuners

Product specification
Supersedes data of 1995 Mar 21
File under Integrated Circuits, IC02

## 9 V UHF mixer/oscillator for TV and VCR tuners

## FEATURES

- Balanced mixer with a common base input
- 4-pin oscillator
- Local oscillator buffer output for external prescaler
- SAW filter preamplifier with a low output impedance to drive the SAW filter directly
- Band gap voltage stabilizer for oscillator stability
- External IF filter between the mixer output and the IF amplifier input.


## GENERAL DESCRIPTION

The TDA5634T is an integrated circuit that performs the UHF mixer/oscillator functions in TV and VCR tuners. This low-power mixer/oscillator requires a power supply of 9 V and is available in a very small package.

The device gives the designer the capability to design an economical and physically small tuner.

The tuner development time can be drastically reduced by using this device.
The frequency band is determined by the external tank circuit. It can be adapted to various standards.

## APPLICATION

- UHF tuners for TV and VCR
- One band tuners


## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{P}}$ | supply voltage |  | - | 9.0 | - | V |
| $\mathrm{I}_{\mathrm{P}}$ | supply current |  | - | 35 | - | mA |
| $\mathrm{f}_{\mathrm{RF}}$ | RF frequency | RF input; note 1 | 430 | - | 860 | MHz |
| $\mathrm{G}_{\mathrm{V}}$ | voltage gain |  | - | 36 | - | dB |
| NF | noise figure | not corrected for image | - | 9 | - | dB |
| $\mathrm{V}_{0}$ | output voltage causing 1\% cross <br> modulation in channel |  | - | 121 | - | $\mathrm{dB} \mu \mathrm{V}$ |

## Note

1. The limits are related to the tank circuits used in Fig. 7 and the intermediate frequency. Frequency bands may be adjusted by the choice of external components.

ORDERING INFORMATION

| TYPE <br> NUMBER | PACKAGE |  |  |
| :---: | :---: | :---: | :---: |
|  | NAME | DESCRIPTION | VERSION |
| TDA5634T | SO16 | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 |

## 9 V UHF mixer/oscillator for TV and VCR

## BLOCK DIAGRAM



Fig. 1 Block diagram.

## 9 V UHF mixer/oscillator for TV and VCR tuners

## PINNING

| SYMBOL | PIN | DESCRIPTION |
| :--- | :---: | :--- |
| CIN1 | 1 | band C input 1 |
| CIN2 | 2 | band C input 2 |
| RFGND | 3 | ground for RF inputs |
| LOOUT1 | 4 | local oscillator amplifier output 1 |
| LOOUT2 | 5 | local oscillator amplifier output 2 |
| GND | 6 | ground (0 V) |
| IFIN1 | 7 | IF amplifier input 1 |
| IFIN2 | 8 | IF amplifier input 2 |
| IFOUT1 | 9 | IF amplifier output 1 |
| IFOUT2 | 10 | IF amplifier output 2 |
| VP | 11 | supply voltage |
| COSCIB1 | 12 | UHF oscillator input base 1 |
| COSCOC1 | 13 | UHF oscillator output collector 1 |
| COSCOC2 | 14 | UHF oscillator output collector 2 |
| COSCIB2 | 15 | UHF oscillator input base 2 |
| n.c. | 16 | not connected |



## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

| SYMBOL | PARAMETER | MIN. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{P}}$ | supply voltage | -0.3 | +10.5 | V |
| $\mathrm{I}_{\mathrm{O}}$ | output current of each pin referenced to ground | - | -10 | mA |
| $\mathrm{t}_{\mathrm{sc}}$ | maximum short-circuit time (all pins) | - | 10 | s |
| $\mathrm{~T}_{\text {stg }}$ | IC storage temperature | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{amb}}$ | operating ambient temperature | -10 | +80 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{j}}$ | junction temperature | - | +150 | ${ }^{\circ} \mathrm{C}$ |

## HANDLING

Human body model: the IC withstands 2000 V in accordance with the " $U Z W-B O / F Q-A 302$ ", specification equivalent to the "MIL-STD-883C category B" (2000 V);
$\mathrm{R}=1500 \Omega, \mathrm{C}=100 \mathrm{pF}$.
Machine model: the IC withstands 200 V except pin 11 (175 V) in accordance with the "UZW-BO/FQ-B302", specification (date of issue: Nov 6th, 1990);
$\mathrm{R}=0 \Omega, \mathrm{C}=200 \mathrm{pF}$.

THERMAL CHARACTERISTICS

| SYMBOL | PARAMETER | VALUE | UNIT |
| :--- | :--- | :---: | :---: |
| $R_{\text {th } j-a}$ | thermal resistance from junction to ambient in free air | 120 | K/W |

# 9 V UHF mixer/oscillator for TV and VCR tuners 

## CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit of Fig.7; unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{P}}$ | supply voltage |  | 8.1 | 9.0 | 9.9 | V |
| $\mathrm{I}_{\mathrm{P}}$ | supply current | $\mathrm{V}_{\mathrm{P}}=8.1$ to $9.9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-10$ to $+80^{\circ} \mathrm{C}$ | - | 35 | 45 | mA |
| Mixer (including IF amplifier) |  |  |  |  |  |  |
| $\mathrm{f}_{\mathrm{RF}}$ | RF frequency | note 1 | 430 | - | 860 | MHz |
| $\mathrm{G}_{\mathrm{v}}$ | voltage gain | $\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig.3; note 2 | 33 | 36 | 39 | dB |
|  |  | $\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig.3; note 2 | 33 | 36 | 39 | dB |
| NF | noise figure (not corrected for image) | $\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig. 4 | - | 9 | 11 | dB |
|  |  | $\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig. 4 | - | 9 | 11 | dB |
| V 。 | output voltage causing 1\% cross modulation in channel | $\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig. 5 | 115 | 118 | - | $\mathrm{dB} \mathrm{\mu} \mathrm{~V}$ |
|  |  | $\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig. 5 | 118 | 121 | - | $\mathrm{dB} \mathrm{\mu} \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{i}}$ | input voltage causing 10 kHz pulling in channel | $\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; note 3 | - | 87 | - | $\mathrm{dB} \mathrm{\mu} \mathrm{~V}$ |
|  | input voltage causing $\mathrm{N}+5-1 \mathrm{MHz}$ pulling | $\mathrm{f}_{\mathrm{RF}}=820 \mathrm{MHz}$; see Fig. 6 | 65 | 72 | - | $\mathrm{dB} \mu \mathrm{V}$ |
| $\mathrm{Z}_{\mathrm{i}}$ | input impedance ( $\mathrm{R}_{\mathrm{S}}+\mathrm{j} L_{s} \omega$ ) | $\mathrm{R}_{\mathrm{S}}$ at $\mathrm{f}_{\mathrm{RF}}=430 \mathrm{MHz}$; see Fig.8; note 4 | - | 28 | - | $\Omega$ |
|  |  | $\mathrm{R}_{\mathrm{S}}$ at $\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig.8; note 4 | - | 33 | - | $\Omega$ |
|  |  | $\mathrm{L}_{\mathrm{S}}$ at $\mathrm{f}_{\mathrm{RF}}=430$ to 860 MHz ; see Fig.8; note 4 | - | 8 | - | nH |
| IF amplifier |  |  |  |  |  |  |
| $\mathrm{S}_{11}$ | input reflection coefficient | magnitude; see Fig.10; note 4 | - | -0.6 | - | dB |
|  |  | phase; see Fig.10; note 4 | - | -2.5 | - | deg |
| $\mathrm{S}_{12}$ | reverse transmission coefficient | magnitude; see Fig.11; note 4 | - | -56 | - | dB |
|  |  | phase; see Fig.11; note 4 | - | 30 | - | deg |
| $\mathrm{S}_{21}$ | forward transmission coefficient | magnitude; note 4 | - | -9.5 | - | dB |
|  |  | phase; note 4 | - | 165 | - | deg |
| $\mathrm{S}_{22}$ | output reflection coefficient | magnitude; see Fig.11; note 4 | - | -7 | - | dB |
|  |  | phase; see Fig.11; note 4 | - | 6 | - | deg |
| $\mathrm{Z}_{0}$ | output impedance$\left(R_{S}+j L_{s} \omega\right)$ | $\mathrm{R}_{\mathrm{S}}$; see Fig.11; note 4 | - | 100 | - | $\Omega$ |
|  |  | Ls; see Fig.11; note 4 | - | 32 | - | nH |
| $\mathrm{Y}_{\mathrm{i}}$ | input admittance ( $\mathrm{G}_{P}+\mathrm{j} \mathrm{C}_{P} \omega$ ) | Gp; see Fig.10; note 4 | - | 0.8 | - | mS |
|  |  | $\mathrm{C}_{\mathrm{P}}$; see Fig.10; note 4 | - | 2.5 | - | pF |

9 V UHF mixer/oscillator for TV and VCR tuners

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LO output; $\mathrm{R}_{\mathrm{L}}=100 \Omega$ |  |  |  |  |  |  |
| Yo | output admittance$\left(G_{p}+j C_{p} \omega\right)$ | $\mathrm{f}_{\mathrm{OSC}}=470 \mathrm{MHz}$; see Fig.9; note 4 | - | 3 | - | mS |
|  |  |  | - | 0.5 | - | pF |
|  |  | $\mathrm{f}_{\text {OSc }}=900 \mathrm{MHz}$; see Fig.9; note 4 | - | 3.5 | - | mS |
|  |  |  | - | 0.5 | - | pF |
| $\mathrm{V}_{0}$ | output voltage | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{V}_{\mathrm{P}}=8.1 \text { to } 9.9 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{amb}}=-10 \text { to }+80^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | 83 | 91 | 100 | $\mathrm{dB} \mu \mathrm{V}$ |
| SRF | spurious signal on LO output with respect to LO output signal | $\mathrm{R}_{\mathrm{L}}=50 \Omega$; note 5 | - | - | -10 | dBc |
| SHD | LO signal harmonics with respect to LO signal | $\mathrm{R}_{\mathrm{L}}=50 \Omega$ | - | - | -10 | dBc |
| Band C oscillator |  |  |  |  |  |  |
| fosc | oscillator frequency | $\begin{aligned} & \mathrm{V}_{\mathrm{t}}=0.45 \text { to } 28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}}=8.1 \text { to } 9.9 \mathrm{~V} \text {; } \\ & \mathrm{T}_{\mathrm{amb}}=-10 \text { to }+80^{\circ} \mathrm{C} \text {; note } 6 \end{aligned}$ | 470 | - | 900 | MHz |
| $\mathrm{f}_{\text {shift }}$ | frequency shift | $\Delta V_{P}=10 \%$; note 7 | - | - | 400 | kHz |
| $\mathrm{f}_{\text {drift }}$ | frequency drift | $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ without compensation; NP0 capacitors; note 8 | - | - | 2.5 | MHz |
|  |  | $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ with compensation; note 9 | - | - | 800 | kHz |
|  |  | 5 s to 15 minutes after switch on; without compensation; note 10 | - | - | 600 | kHz |

## Notes

1. The RF frequency range is defined by the oscillator frequency range and the intermediate frequency.
2. The gain is defined as the transducer gain (measured in Fig.7) plus the voltage transformation ratio of L3 to L2 ( $10: 2,15.4 \mathrm{~dB}$ including transformer loss).
3. The input level causing 10 kHz frequency detuning at the LO output; $\mathrm{f}_{\mathrm{osc}}=\mathrm{f}_{\mathrm{RF}}+33.4 \mathrm{MHz}$.
4. All S-parameters are referred to a $50 \Omega$ system.
5. Measured with RF input voltage of $97 \mathrm{~dB} \mathrm{\mu V}$ at $430 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}}<860 \mathrm{MHz}$.
6. Limits are related to the tank circuits used in Fig.7. Frequency bands may be adjusted by the choice of external components.
7. The frequency shift is defined as the change in oscillator frequency when the supply voltage varies from $V_{P}=9$ to 8.1 V or from $\mathrm{V}_{\mathrm{P}}=9$ to 9.9 V .
8. The frequency drift is defined as the change in oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ or from $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Without compensation, the capacitors C 11 to C 15 are NP0.
9. The frequency drift is defined as the change in oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ or from $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. With compensation, the capacitors C 11 to C 14 are N 750 and C15 is N470.
10. Switch on drift is defined as the change in oscillator frequency between 5 s and 15 min after switch on.

## 9 V UHF mixer/oscillator for TV and VCR



Loss of the hybrid: 1 dB .
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}$ - loss of the hybrid.
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}^{\prime}$ meas +15.4 dB (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and transformer loss).
$G_{v}=20 \log \frac{V_{0}}{V_{i}}=20 \log \frac{V_{\text {meas }}^{\prime}}{V_{\text {meas }}}+15.4 \mathrm{~dB}+$ loss of the hybrid.
Fig. 3 Gain measurement in band C.


Loss of the hybrid: 1 dB .
$N F=N F_{\text {meas }}-$ loss of the hybrid.

Fig. 4 Noise figure measurement in band C.

## 9 V UHF mixer/oscillator for TV and VCR


$\mathrm{V}_{\text {meas }}=\mathrm{V}_{\mathrm{o}}-15.4 \mathrm{~dB}$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and transformer loss).
Wanted output signal at $\mathrm{f}_{\mathrm{RFw}}: \mathrm{V}_{\text {ow }}=108 \mathrm{~dB} \mu \mathrm{~V}, \mathrm{~V}_{\text {meas }}=92.6 \mathrm{~dB} \mu \mathrm{~V}$.
Measuring the level of the unwanted output signal $\mathrm{V}_{\text {ou }}$ causing $0.3 \% \mathrm{AM}$ modulation in the wanted output signal.
$V_{\text {ou }}=V_{\text {meas }}+15.4 \mathrm{~dB}$.
$\mathrm{f}_{\mathrm{RFU}}=\mathrm{f}_{\mathrm{RFW}}+5.5 \mathrm{MHz} ; \mathrm{f}_{\text {osc }}=\mathrm{f}_{\mathrm{RF}}+38.9 \mathrm{MHz}$.
Filter characteristics: $\mathrm{f}_{\mathrm{c}}=38.9 \mathrm{MHz} ; \mathrm{f}_{-3 \mathrm{dBBW}}=1.2 \mathrm{MHz} ; \mathrm{f}_{-30 \mathrm{dBBW}}=2.64 \mathrm{MHz}$.

Fig. 5 Cross modulation measurement in band C.


Loss of the hybrid: 1 dB .
In band C: $\mathrm{f}_{\text {RFw }}=781 \mathrm{MHz}$. These wanted signals are not used during the measurement.
In band C: $\mathrm{f}_{\text {osc }}=819.9 \mathrm{MHz}$.
In band C: $\mathrm{f}_{\mathrm{RFU}}=820 \mathrm{MHz}=\mathrm{f}_{\mathrm{RFW}}+5 \times 8 \mathrm{MHz}-1 \mathrm{MHz}$.
Measuring the level of the unwanted signal $\mathrm{V}_{\text {iu }}$ causing FM sidebands 30 dB below the oscillator carrier at the LO output.
$\mathrm{V}_{\mathrm{iu}}=\mathrm{V}_{\text {meas }}$ - loss of the hybrid.

Fig. $6 \mathrm{~N}+5-1 \mathrm{MHz}$ pulling measurement in band C .

## 9 V UHF mixer/oscillator for TV and VCR



L2, L3 and C9 are only required for measurement purposes; they are not used in a tuner.

Fig. 7 Measurement circuit.

## 9 V UHF mixer/oscillator for TV and VCR

## Component values for measurement circuit

Table 1 Capacitors
(all SMD and NP0 except C11 to C15)

| COMPONENT | VALUE |
| :--- | :--- |
| C1 | 1 nF |
| C2 | 1 nF |
| C3 | 1 nF |
| C4 | 1 nF |
| C5 | 18 pF |
| C6 | 18 pF |
| C7 | 1 nF |
| C8 | 1 nF |
| C9 | 18 pF |
| C10 | 22 nF |
| C11 | $1 \mathrm{pF} \mathrm{(N750)}$ |
| C12 | $1 \mathrm{pF} \mathrm{(N750)}$ |
| C13 | $1 \mathrm{pF} \mathrm{(N750)}$ |
| C14 | $1 \mathrm{pF}(\mathrm{N} 750)$ |
| C15 | $6 \mathrm{pF} \mathrm{(N470)}$ |
| C16 | 100 pF |
| C17 | $1 \mu F(40$ V electrolytic <br> capacitor $)$ |

Table 2 Resistors (all SMD)

| COMPONENT | VALUE |
| :--- | :--- |
| R1 | $100 \Omega$ |
| R2 | $22 k \Omega$ |
| R3 | $2.2 k \Omega$ |
| $R 4$ | $22 k \Omega$ |
| $R 5$ | $47 k \Omega$ |

Table 3 Diodes and IC

| COMPONENT | VALUE |
| :--- | :--- |
| D1 | BB215 |
| IC | TDA5634T |

Table 4 Coils (wire size 0.4 mm )

| COMPONENT | VALUE |
| :--- | :---: |
| L5 | 2.5 turns; diameter 3 mm |
| L6 | 2.5 turns; diameter 2.5 mm |

Table 5 Transformers; note 1

| COMPONENT | VALUE |
| :--- | :--- |
| L1 | $2 \times 6$ turns |
| L2 | $2 \times 5$ turns |
| L3 | 2 turns |

## Note

1. Coil type: TOKO 7 kN ; material: 113 kN ; screw core 03-0093; pot core 04-0026.


Fig. 8 Input impedance $\left(S_{11}\right)$ of the mixer input ( 430 to 860 MHz ) (Z chart).


Fig. 9 Output admittance $\left(\mathrm{S}_{22}\right)$ of the LO output ( 470 to 900 MHz ) (Y chart).


Fig. 10 Input admittance $\left(\mathrm{S}_{11}\right)$ of the IF amplifier ( 25 to 45 MHz ) (Y chart).


Fig. 11 Reverse transmission and output reflection coefficient $\left(S_{12}\right.$ and $S_{22}$ ) of the IF amplifier ( 25 to 45 MHz ) (Z chart).

## 9 V UHF mixer/oscillator for TV and VCR

INTERNAL PIN CONFIGURATION

| SYMBOL | PIN | DESCRIPTION | AVERAGE DC VOLTAGE ${ }^{(1)}$ IN (V) |
| :---: | :---: | :---: | :---: |
|  | TDA5634T |  | BAND C |
| CIN1 | 1 |  | 2.2 |
| CIN2 | 2 |  | 2.2 |
| RFGND | 3 |  | 0.0 |
| LOOUT1 | 4 |  | 7.3 |
| LOOUT2 | 5 |  | 7.3 |
| GND | 6 |  | 0 |
| IFIN1 | 7 | (7) (8) <br> MBH433 | 9.0 |
| IFIN2 | 8 |  | 9.0 |
| IFOUT1 | 9 | MBH428 | 3.8 |
| IFOUT2 | 10 |  | 3.8 |

## 9 V UHF mixer/oscillator for TV and VCR

| SYMBOL | PIN | DESCRIPTION | AVERAGE DC VOLTAGE ${ }^{(1)}$ IN (V) |
| :---: | :---: | :---: | :---: |
|  | TDA5634T |  | BAND C |
| $\mathrm{V}_{\mathrm{P}}$ | 11 | supply voltage | 9.0 |
| COSCIB1 | 12 |  | 2.3 |
| COSCOC1 | 13 |  | 4.4 |
| COSCOC2 | 14 |  | 4.4 |
| COSCIB2 | 15 |  | 2.3 |
| n. c. | 16 |  | N.R. ${ }^{(2)}$ |

## Notes

1. Average DC voltage measured in circuit of Fig.7.
2. N.R. = Not Relevant.

## 9 V UHF mixer/oscillator for TV and VCR

## PACKAGE OUTLINE

SO16: plastic small outline package; 16 leads; body width 3.9 mm
SOT109-1


DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | A max. | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $\mathrm{L}_{\mathrm{p}}$ | Q | v | w | y | $Z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.75 | $\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$ | $\begin{gathered} 10.0 \\ 9.8 \end{gathered}$ | $\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$ | 1.27 | $\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$ | 1.05 | $\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$ | 0.25 | 0.25 | 0.1 | $\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$ |
| inches | 0.069 | $\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$ | $\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$ | 0.050 | $\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$ | 0.041 | $\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$ | $\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$ | 0.01 | 0.01 | 0.004 | $\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$ |  |

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT109-1 | 076E07S | MS-012AC |  | $\square$ ¢ | $\begin{aligned} & 95-01-23 \\ & 97-05-22 \end{aligned}$ |

# 9 V UHF mixer/oscillator for TV and VCR tuners 

## SOLDERING

## Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

## Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

## Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

## Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V ) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

## 9 V UHF mixer/oscillator for TV and VCR

 tuners
## DEFINITIONS

| Data sheet status |  |
| :--- | :--- |
| Objective specification | This data sheet contains target or goal specifications for product development. |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |
| Product specification | This data sheet contains final product specifications. |
| Limiting values |  |
| Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or <br> more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation <br> of the device at these or at any other conditions above those given in the Characteristics sections of the specification <br> is not implied. Exposure to limiting values for extended periods may affect device reliability. |  |
| Application information | Where application information is given, it is advisory and does not form part of the specification. |

## LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

# 9 V UHF mixer/oscillator for TV and VCR <br> TDA5634T 

## NOTES

# 9 V UHF mixer/oscillator for TV and VCR <br> TDA5634T 

## NOTES

# Philips Semiconductors - a worldwide company 

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580/xxx
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240

## Hungary: see Austria

India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722

## Indonesia: see Singapore

Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +603750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095247 9145, Fax. +7 0952479144
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978 ,
TAIPEI 100, Tel. +886 2382 4443, Fax. +886 23824444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1996
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

PHILIPS

