
Damper diode fast, high-voltage

BY479X-1700

FEATURES

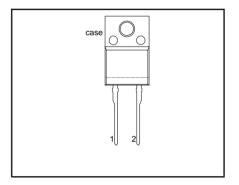
- Low forward volt drop
- Low Forward recovery voltage
- · Fast switching
- Soft recovery characteristic
- High thermal cycling performanceIsolated mounting tab

SYMBOL

QUICK REFERENCE DATA

V _R = 1700 V
$V_F \le 1.2 \text{ V}$
$V_{fr} \leq 19 \text{ V}$
$I_{FWM} = 10 A$
$I_{FRM} \le 100 A$
$t_{fr} \leq 300 \text{ ns}$

GENERAL DESCRIPTION


Glass-passivated double diffused rectifier diode featuring fast forward recovery and low forward recovery voltage. The device is intended for use in multi-sync monitor deflection circuits up to 64kHz. The device is designed to withstand transient reverse voltages up to 1700V.

The BY479X series is supplied in the conventional leaded SOD113 package.

PINNING

PIN	DESCRIPTION		
1	cathode		
2	anode		
tab	isolated		

SOD113

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{RSM}	Peak non-repetitive reverse voltage during flash-over of picture tube			1700	V
V _{RRM} V _{RWM} I _{FWM} I _{FRM}	Peak repetitive reverse voltage Crest working reverse voltage Peak working forward current Peak repetitive forward current Peak non-repetitive forward current	$t = 3.5 \mu s$; $f = 64kHz$ $f = 64kHz$; $T_{hs} \le 126 ^{\circ}C$ $t = 100 \mu s$ t = 10 ms t = 8.3 ms sinusoidal; $T_j = 150 ^{\circ}C$ prior to surge; with reapplied $V_{RWM(max)}$		1700 1300 10 100 100 100	V
${\mathsf T}_{stg} \ {\mathsf T}_{\mathsf j}$	Storage temperature Operating junction temperature	odigo, with roappilod v RWM(max)	-40 -	150 150	°C °C

¹ Including worst case forward recovery losses, see fig:5.

Philips Semiconductors Product specification

Damper diode fast, high-voltage

BY479X-1700

ISOLATION LIMITING VALUE & CHARACTERISTIC

 T_{hs} = 25 °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	R.M.S. isolation voltage from both terminals to external heatsink	f = 50-60 Hz; sinusoidal waveform; R.H. ≤ 65%; clean and dustfree	-		2500	V
C _{isol}	Capacitance from both terminals to external heatsink	f = 1 MHz	-	10	-	pF

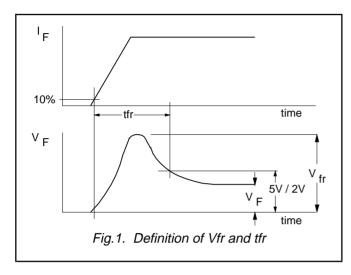
THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$R_{\text{th j-hs}}$ $R_{\text{th j-a}}$	heatsink	with heatsink compound without heatsink compound in free air		- - 55	4.8 5.9 -	K/W K/W K/W

STATIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{F}	Forward voltage	I _F = 6.5 A	-	0.95	1.3	V
		$I_F = 6.5 \text{ A}; T_i = 125 ^{\circ}\text{C}$	-	0.85	1.2	V
I_R	Reverse current	$V_R = V_{RWMmax}$	-	-	0.25	mΑ
		$V_R = V_{RWMmax}$; $T_i = 125 ^{\circ}C$	-	-	1.0	mA


DYNAMIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{fr}	Forward recovery voltage	$I_{\rm F} = 6.5 \text{ A}$; $dI_{\rm F}/dt = 50 \text{ A/}\mu\text{s}$	-	12	19	٧
t _{fr}	Forward recovery time	$I_F = 6.5 \text{ A}$; $dI_F/dt = 50 \text{ A/}\mu\text{s}$; $V_F = 5 \text{ V}$	-	200	300	ns
		$ I_F = 6.5 \text{ A}; dI_F/dt = 50 \text{ A/}\mu\text{s}; V_F = 2 \text{ V} $	-	400	-	ns
t _{rr}	Reverse recovery time	$ I_F = 1 \text{ A}; -dI_F/dt = 50 \text{ A/}\mu\text{s}; V_R \ge 30 \text{ V} $	-	250	350	ns
Üs	Reverse recovery charge	$I_F = 2 \text{ A}$; $-dI_F/dt = 20 \text{ A/µs}$; $V_R \ge 30 \text{ V}$	-	2.0	3.0	μC

Damper diode fast, high-voltage

BY479X-1700

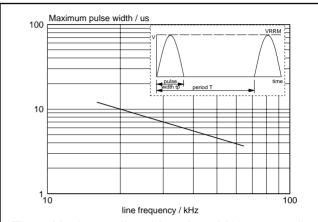
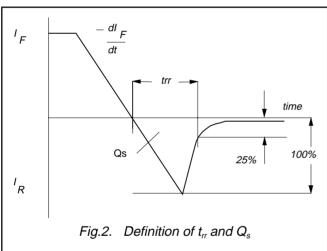



Fig.4. Maximum allowable pulse width t_p versus line frequency; Basic horizontal deflection circuit.

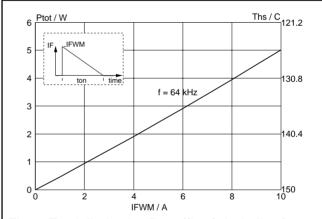
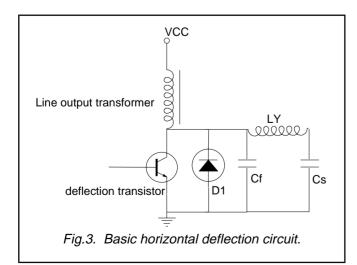



Fig.5. Total dissipation $P_{tot} = f(I_{FWM})$; including forward recovery losses; Basic horizontal deflection circuit.

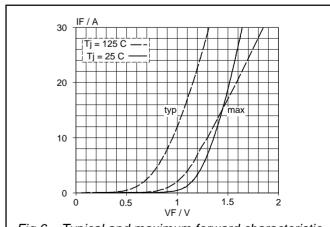
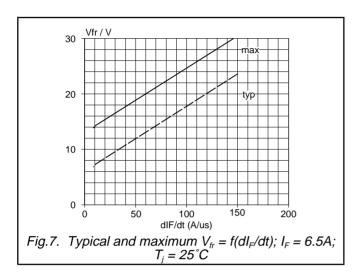
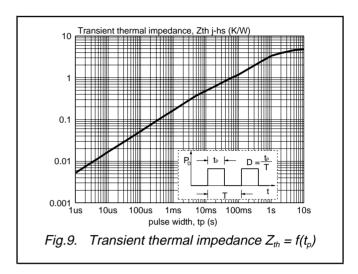




Fig.6. Typical and maximum forward characteristic $I_F = f(V_F)$; parameter T_i

Damper diode fast, high-voltage

BY479X-1700

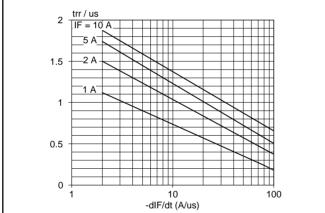
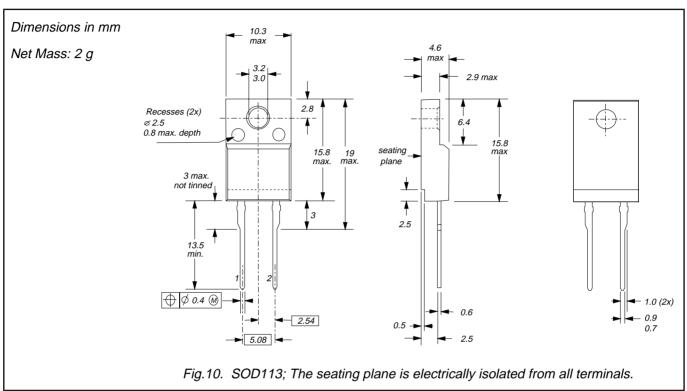



Fig.8. Maximum reverse recovery time $t_{rr} = f(dl_F/dt)$; parameter T_j : $V_R \ge 30V$

Damper diode fast, high-voltage

BY479X-1700

MECHANICAL DATA

Notes

- Refer to mounting instructions for F-pack envelopes.
 Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

Damper diode fast, high-voltage

BY479X-1700

DEFINITIONS

Data sheet status				
Objective specification This data sheet contains target or goal specifications for product development.				
Preliminary specification This data sheet contains preliminary data; supplementary data may be published late				
Product specification This data sheet contains final product specifications.				
Limiting values				

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.