LINEAR PRODUCTS

Product specification

April 15, 1992

Philips Semiconductors

NE592

DESCRIPTION

The NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

FEATURES

- 120MHz unity gain bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components
- MIL-STD processing available

PIN CONFIGURATIONS

Figure 1. Pin Configuration

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

Figure 2. Block Diagram

BLOCK DIAGRAM

NE592

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE592N14	SOT27-1
14-Pin Small Outline (SO) package	0 to +70°C	NE592D14	SOT108-1
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE592N8	SOT97-1
8-Pin Small Outline (SO) package	0 to +70°C	NE592D8	SOT96-1

NOTES:

N8, N14, D8 and D14 package parts also available in "High" gain version by adding "H" before package designation, i.e., NE592HDB

ABSOLUTE MAXIMUM RATINGS

 $T_A=+25^{\circ}C$, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	±8	V
V _{IN}	Differential input voltage	±5	V
V _{CM}	Common-mode input voltage	±6	V
I _{OUT}	Output current	10	mA
T _A	Operating ambient temperature range	0 to +70	°C
T _{STG}	Storage temperature range	-65 to +150	°C
P _{D MAX}	Maximum power dissipation,		
	T _A =25°C (still air)¹		
	D-14 package	0.98	W
	D-8 package	0.79	W
	N-14 package	1.44	W
	N-8 package	1.17	W

NOTES:

1. Derate above 25°C at the following rates: D-14 package at 7.8mW/°C D-8 package at 6.3mW/°C N-14 package at 11.5mW/°C N-8 package at 9.3mW/°C

NE592

DC ELECTRICAL CHARACTERISTICS

T_A=+25°C V_{SS}=±6V, V_{CM}=0, unless otherwise specified. Recommended operating supply voltages V_S=±6.0V. All specifications apply to both standard and high gain parts unless noted differently.

SVMDOL	DADAMETED	TEST CONDITIONS				
STNIBUL	FARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
A _{VOL}	Differential voltage gain,					
	standard part					
	Gain 1 ¹	R _L =2kΩ, V _{OUT} =3V _{P-P}	250	400	600	V/V
	Gain 2 ^{2, 4}		80	100	120	V/V
R _{IN}	Input resistance					
	Gain 1 ¹			4.0		kΩ
	Gain 2 ^{2, 4}		10	30		kΩ
C _{IN}	Input capacitance ²	Gain 2 ⁴		2.0		pF
I _{OS}	Input offset current			0.4	5.0	μA
I _{BIAS}	Input bias current			9.0	30	μA
V _{NOISE}	Input noise voltage	BW 1kHz to 10MHz		12		μV_{RMS}
V _{IN}	Input voltage range		±1.0			V
CMRR	Common-mode rejection ratio					
	Gain 2 ⁴	V _{CM} ±1V, f<100kHz	60	86		dB
	Gain 2 ⁴	V _{CM} ±1V, f=5MHz		60		dB
PSRR	Supply voltage rejection ratio					
	Gain 2 ⁴	$\Delta V_S = \pm 0.5 V$	50	70		dB
V _{OS}	Output offset voltage					
	Gain 1	R _L =∞			1.5	V
	Gain 2 ⁴	R _L =∞			1.5	V
	Gain 3 ³	R _L =∞		0.35	0.75	V
V _{CM}	Output common-mode voltage	R _L =∞	2.4	2.9	3.4	V
V _{OUT}	Output voltage swing	$R_L=2k\Omega$	3.0	4.0		V
	differential					
R _{OUT}	Output resistance			20		Ω
I _{CC}	Power supply current	R _L =∞		18	24	mA

NOTES:
1. Gain select Pins G_{1A} and G_{1B} connected together.
2. Gain select Pins G_{2A} and G_{2B} connected together.
3. All gain select pins open.
4. Applies to 14-pin version only.

NE592

DC ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics V_{SS}= \pm 6V, V_{CM}=0, 0°C \leq T_A \leq 70°C, unless otherwise specified. Recommended operating supply voltages V_S= \pm 6.0V. All specifications apply to both standard and high gain parts unless noted differently.

SAMBOI	DADAMETED	TEST CONDITIONS				
STWBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
A _{VOL}	Differential voltage gain,					
	standard part					
	Gain 1 ¹	R _L =2kΩ, V _{OUT} =3V _{P-P}	250		600	V/V
	Gain 2 ^{2, 4}		80		120	V/V
R _{IN}	Input resistance					
	Gain 2 ^{2, 4}		8.0			kΩ
I _{OS}	Input offset current				6.0	μA
I _{BIAS}	Input bias current				40	μA
V _{IN}	Input voltage range		±1.0			V
CMRR	Common-mode rejection ratio					
	Gain 2 ⁴	V _{CM} ±1V, f<100kHz	50			dB
PSRR	Supply voltage rejection ratio					
	Gain 2 ⁴	ΔV_{S} =±0.5V	50			dB
V _{OS}	Output offset voltage Gain 1 Gain 2 ⁴ Gain 3 ³	R∟=∞			1.5 1.5 1.0	V
V _{OUT}	Output voltage swing differential	$R_L=2k\Omega$	2.8			V
I _{CC}	Power supply current	R _L =∞			27	mA

NOTES:

1. Gain select Pins G_{1A} and G_{1B} connected together. 2. Gain select Pins G_{2A} and G_{2B} connected together. 3. All gain select pins open. 4. Applies to 14-pin versions only.

AC ELECTRICAL CHARACTERISTICS

T_A=+25°C V_{SS}=±6V, V_{CM}=0, unless otherwise specified. Recommended operating supply voltages V_S=±6.0V. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS		NE/SA592		
			Min	Тур	Max	
BW	Bandwidth Gain 1 ¹ Gain 2 ^{2, 4}			40 90		MHz MHz
t _R	Rise time Gain 1 ¹ Gain 2 ^{2, 4}	V _{OUT} =1V _{P-P}		10.5 4.5	12	ns ns
t _{PD}	Propagation delay Gain 1 ¹ Gain 2 ^{2, 4}	V _{OUT} =1V _{P-P}		7.5 6.0	10	ns ns

NOTES:

1. Gain select Pins G_{1A} and G_{1B} connected together. 2. Gain select Pins G_{2A} and G_{2B} connected together. 3. All gain select pins open. 4. Applies to 14-pin versions only.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5.

NE592

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 11.

Figure 14.

NE592

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 17.

Figure 20.

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 22.

Figure 25. Test Circuits

Figure 24.

TYPICAL APPLICATIONS

Figure 26. Typical Applications

FILTER NETWORKS

Figure 27. Filter Networks

NE592

SOT27-1

Product specification

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	Ð	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001AA				-92-11-17 95-03-11

Product specification

```
NE592
```


NE592

DIP8: plastic dual in-line package; 8 leads (300 mil) SOT97-1 ME D seating plane Α. -**\$** wM Ζ b₁ е (e1) M_{H} b₂ pin 1 index F 4 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) Е ⁽¹⁾ Z⁽¹⁾ A max. A₂ max. A₁ min. D ⁽¹⁾ UNIT b с L Μ_E M_H w b₁ b₂ е e₁ max. 1.73 0.53 1.07 0.36 9.8 6.48 3.60 8.25 10.0 mm 4.2 0.51 3.2 2.54 7.62 0.254 1.15 0.38 0.89 6.20 7.80 1.14 0.23 9.2 3.05 8.3

Note

inches

0.17

0.020

0.13

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

0.068

0.045

0.021

0.015

0.042

0.035

0.014

0.009

OUTLINE		REFER	EUROPEAN			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT97-1	050G01	MO-001AN				-92-11-17 95-02-04

0.39

0.36

0.26

0.24

0.10

0.30

0.14

0.12

0.32

0.31

0.39

0.33

0.01

0.045

Product specification

```
NE592
```


DEFINITIONS						
Data Sheet Identification Product Status		Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1992 All rights reserved. Printed in U.S.A.