DATA SHEET

TZA3030
 SDH/SONET STM1/OC3 optical receiver

Objective specification
File under Integrated Circuits, IC19

FEATURES

- Low equivalent input noise, typically $1 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
- Wide dynamic range, typically $0.5 \mu \mathrm{~A}$ to 2 mA
- On-chip low-pass filter. The bandwidth can be varied between 90 and 150 MHz using an external resistor. Default value is 120 MHz .
- Differential transimpedance of $1.8 \mathrm{M} \Omega$
- On-chip Automatic Gain Control (AGC)
- Positive Emitter Coupled Logic (PECL) or Current-Mode Logic (CML) compatible data outputs
- LOS (Loss Of Signal) detection
- LOS threshold level can be adjusted using a single external resistor
- On-chip DC offset compensation
- Single supply voltage from 3.0 to 5.5 V
- Bias voltage for PIN diode.

APPLICATIONS

- Digital fibre optic receiver in short, medium and long haul optical telecommunications transmission systems or in high speed data networks
- Wideband RF gain block.

GENERAL DESCRIPTION

The TZA3030 optical receiver is a low-noise transimpedance amplifier with AGC plus a limiting amplifier designed to be used in SDH/SONET fibre optic links. The TZA3030 amplifies the current generated by a photo detector (PIN diode or avalanche photodiode) and converts it to a differential output voltage.

ORDERING INFORMATION

| TYPE
 NUMBER | PACKAGE | | |
| :--- | :---: | :--- | :---: | :---: |
| | NAME | DESCRIPTION | VERSION |
| TZA3030HL | LQFP32 | plastic low profile quad flat package; 32 leads; body $5 \times 5 \times 1.4 \mathrm{~mm}$ | SOT401-1 |
| TZA3030U | - | naked die in waffle pack carriers; die dimensions $1.58 \times 1.58 \mathrm{~mm}$ | - |

BLOCK DIAGRAM

Fig. 1 Block diagram.

PINNING

SYMBOL	PIN	TYPE	DESCRIPTION
AGND	1	ground	analog ground
$\mathrm{V}_{\text {CCA }}$	2	supply	analog supply voltage
AGND	3	ground	analog ground
DREF	4	analog output	bias voltage for PIN diode ($\mathrm{V}_{\mathrm{CCA}}$); cathode should be connected to this pin
$\mathrm{V}_{\text {CCA }}$	5	supply	analog supply voltage
AGND	6	ground	analog ground
IPhoto	7	analog input	current input; connect the anode of PIN diode to this pin; DC bias level is 1048 mV
AGND	8	ground	analog ground
AGND	9	ground	analog ground
BWC	10	analog input	bandwidth control pin; default bandwidth is 120 MHz ; a resistor should be connected between $\mathrm{V}_{\text {ref }}$ (pin 11) and BWC (pin 10) to decrease bandwidth, or between BWC (pin 10) and AGND to increase bandwidth
$\mathrm{V}_{\text {ref }}$	11	analog output	band gap reference voltage; nominal value approximately 1.2 V
SUB	12	substrate	substrate pin; to be connected to AGND
DGND	13	ground	digital ground
RFTEST	14	analog input	test pin; not connected; not used in application
OUTSEL	15	CMOS input	output select pin; when OUTSEL is HIGH, CML data outputs are active and PECL data outputs are disabled; OUTSEL is pulled LOW if left unconnected, PECL data outputs will then be active and CML data outputs disabled
DGND	16	ground	digital ground
$\mathrm{V}_{\text {CCD }}$	17	supply	digital supply voltage
OUTCML	18	CML output	CML data output; OUTCML goes HIGH when current flows into IPhoto (pin 7)
OUTQCML	19	CML output	CML compliment of OUTCML (pin 18)
$\mathrm{V}_{\text {CCD }}$	20	supply	digital supply voltage
DGND	21	ground	digital ground
OUTPECL	22	PECL output	PECL data output; OUTPECL goes HIGH when current flows into IPhoto (pin 7)
OUTQPECL	23	PECL output	PECL compliment of OUTPECL (pin 22)
DGND	24	ground	digital ground
DGND	25	ground	digital ground
LOS	26	PECL output	PECL-compatible LOS detection pin; LOS output is HIGH when the input signal is below the user programmable threshold level
LOSQ	27	PECL output	PECL compliment of LOS (pin 26)
LOSTTL	28	TTL output	CMOS-compatible LOS detection pin; the LOSTTL output is HIGH when the input signal is below the user programmable threshold level
LOSTH	29	analog I/O	pin for setting input threshold level; nominal DC voltage is $\mathrm{V}_{\mathrm{CCA}}-1.5 \mathrm{~V}$; threshold level set by connecting an external resistor between LOSTH and $\mathrm{V}_{\text {CCA }}$ or by forcing a current into LOSTH; default value for this resistor is $400 \mathrm{k} \Omega$
AGND	30	ground	analog ground
AGC	31	analog I/O	AGC monitor voltage; the internal AGC circuit can be disabled by applying an external voltage to this pin
AGND	32	ground	analog ground

CHIP DIMENSIONS AND BONDING PAD LOCATIONS

SYMBOL	PAD	COORDINATES ${ }^{(1)}$	
		\mathbf{x}	\mathbf{y}
AGND	1	102	1251
V $_{\text {CCA }}$	2	102	1111
AGND	3	102	971
DREF	4	102	814
V $_{\text {CCA }}$	5	102	674
AGND	6	102	534
IPhoto	7	102	395
AGND	8	102	254
AGND	9	243	105
BWC	10	383	105
V $_{\text {ref }}$	11	523	105
SUB	12	663	105
DGND	13	803	105
RFTEST	14	943	105
OUTSEL	15	1100	105
DGND	16	1257	105
V $_{\text {CCD }}$	17	1398	263
OUTCML	18	1398	403

SYMBOL	PAD	COORDINATES ${ }^{(1)}$	
		\mathbf{x}	\mathbf{y}
OUTQCML	19	1398	543
V $_{\text {CCD }}$	20	1398	683
DGND	21	1398	823
OUTPECL	22	1398	963
OUTQPECL	23	1398	1103
DGND	24	1398	1243
DGND	25	1283	1400
LOS	26	1143	1400
LOSQ	27	986	1400
LOSTTL	28	829	1400
LOSTH	29	671	1400
AGND	30	514	1400
AGC	31	357	1400
AGND	32	217	1400

Note

1. All coordinates ($\mu \mathrm{m}$) are measured with respect to the bottom left-hand corner of the die.

Fig. 3 Bonding pad locations of TZA3030U.

FUNCTIONAL DESCRIPTION

The TZA3030 contains five functional blocks:

- Preamplifier input stage
- Low-pass filter
- Limiting amplifier stage
- Offset compensation loop
- Loss of signal detection unit.

Preamplifier

The preamplifier provides low-noise amplification of the current generated by a photodiode connected to pin IPhoto.

A differential amplifier converts the output of the preamplifier to a differential voltage. An AGC loop increases the dynamic range of the receiver by reducing the feedback resistance of the preamplifier. The AGC loop hold capacitor is integrated on-chip, so an external capacitor is not needed for AGC. The AGC voltage can be monitored at pin AGC. This pin can be left unconnected for normal operation. It can also be used to force an external AGC voltage. If pin AGC is connected to $\mathrm{V}_{\mathrm{CCA}}$, the internal AGC loop is disabled and the receiver gain is at a maximum. In this case, the maximum input current is approximately $10 \mu \mathrm{~A}$.

Low-pass filter

A low-pass filter controls the bandwidth of the receiver, which can be varied between 90 and 150 MHz . The bandwidth is set to 120 MHz by default. It can be decreased by connecting a resistor between pin BWC and pin $\mathrm{V}_{\text {ref }}$ or increased by connecting a resistor between pin BWC and AGND.

Limiting amplifier

A limiting amplifier boosts the signal up to PECL levels. The output can be either CML or PECL compatible, selected by means of pin OUTSEL. When OUTSEL is HIGH, the CML data outputs are active and the PECL data outputs are disabled. If OUTSEL is left unconnected, it is pulled LOW and the PECL data outputs are active while the CML data outputs are disabled.

The logic level symbol definitions for CML and PECL are shown in Fig. 4.
The CML and PECL output circuits are given in Fig.5.

Offset compensation loop

A control loop connected between the limiting amplifier output and the differential amplifier input cancels the DC offset. The loop bandwidth is fixed internally at 30 kHz .

Loss Of Signal (LOS) detection

The LOS section detects an input signal level below a fixed threshold. The threshold is determined by the current through pin LOSTH. If this current is increased, the threshold level will rise. An external resistor connected between pin LOSTH and $\mathrm{V}_{\text {CCA }}$ can be used, or a current can be forced into pin LOSTH. The default value for the external resistor is $400 \mathrm{k} \Omega$. In this case, the current through pin LOSTH will be approximately $3.75 \mu \mathrm{~A}$ since the voltage at pin LOSTH is regulated at 1.5 V below the supply voltage. This threshold corresponds to an input current of 208 nA . The ratio of LOSTH current to input current is thus approximately $18: 1$. When the input signal level falls below this threshold, the LOS
(PECL compatible) and LOSTTL (TTL compatible)
outputs go HIGH. The hysteresis is fixed internally at 3 dB . Response time is typically less than $20 \mu \mathrm{~s}$.

Fig. 4 Logic level symbol definitions for CML and PECL.

Fig. 5 Output circuits.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
VCC	supply voltage	-0.5	+6	V
V_{n}	DC voltage pin 7: IPhoto pin 14: RFTEST pins 22, 23, 26 and 27: OUTPECL, OUTQPECL, LOS and LOSQ pins 18 and 19: OUTCML and OUTQCML pin 29: LOSTH pin 10: BWC pin 31: AGC pin 11: $\mathrm{V}_{\text {ref }}$ pin 4: DREF pin 15: OUTSEL pin 28: LOSTTL	-0.5 -0.5 $V_{C C}-2$ $V_{C C}-2$ -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	$\begin{aligned} & +2 \\ & V_{C C}+0.5 \\ & V_{C C}+0.5 \\ & V_{C C}+0.5 \\ & V_{C C}+0.5 \\ & +3.2 \\ & V_{C C}+0.5 \\ & +3.2 \\ & V_{C C}+0.5 \\ & V_{C C}+0.5 \\ & V_{C C}+0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{n}	DC current pin 7: IPhoto pin 14: RFTEST pins 22, 23, 26 and 27: OUTPECL, OUTQPECL, LOS and LOSQ pins 18 and 19: OUTCML and OUTQCML pin 29: LOSTH pin 10: BWC pin 31: AGC pin 11: $\mathrm{V}_{\text {ref }}$ pin 4: DREF pin 15: OUTSEL pin 28: LOSTTL	-2.5 -2 -25 -15 -2 -1 -0.2 -2 -2.5 -0.5 -16	$\begin{aligned} & +2.5 \\ & +2 \\ & +10 \\ & +15 \\ & +2 \\ & +1 \\ & +0.2 \\ & +2.5 \\ & +2.5 \\ & +0.5 \\ & +16 \\ & \hline \end{aligned}$	mA mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	600	mW
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$\mathrm{R}_{\mathrm{th}(j-\mathrm{s})}$	thermal resistance from junction to solder point	tbf	K/W
$\mathrm{R}_{\mathrm{th}(j-\mathrm{a})}$	thermal resistance from junction to ambient	tbf	K/W

CHARACTERISTICS

For typical values $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; minimum and maximum values are valid over the entire ambient temperature range and process spread.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {CC }}$	supply voltage		3	5	5.5	V
$\mathrm{I}_{\text {CCD }}$	digital supply current	note 1	13	20	28	mA
		note 2	-	47	-	mA
		note 3	11	17	24	mA
ICCA	analog supply current		24	36	51	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation		-	-	525	mW
T_{j}	junction temperature		-40	-	+110	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-40	+25	+85	${ }^{\circ} \mathrm{C}$
R_{tr}	small-signal transresistance of the receiver	measured differentially PECL outputs CML outputs		$\begin{aligned} & 2000 \\ & 1000 \end{aligned}$	$-$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
$\mathrm{f}_{-3 \mathrm{~dB}(\mathrm{~h})}$	high frequency -3 dB point	pin BWC left unconnected; note 4	-	120	-	MHz
$\mathrm{f}_{-3 \mathrm{~dB}(1)}$	low frequency -3 dB point		20	30	40	kHz
$\mathrm{In}_{\text {(tot) }}$	total integrated RMS noise current over bandwidth	referenced to input; $\begin{gathered} \mathrm{C}_{\mathrm{i}}=1.2 \mathrm{pF} ; \text { note } 5 \\ \Delta \mathrm{f}=90 \mathrm{MHz} \\ \Delta \mathrm{f}=120 \mathrm{MHz} \\ \Delta \mathrm{f}=155 \mathrm{MHz} \end{gathered}$	-	16 tbf tbf		nA nA nA
PSRR	power supply rejection ratio	measured differentially; note 6 $\begin{aligned} & f=100 \mathrm{kHz} \text { to } 10 \mathrm{MHz} \\ & \mathrm{f}=10 \mathrm{MHz} \text { to } 100 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 0.5 \\ & 10 \end{aligned}$		$\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$
$\Delta \mathrm{R}_{\mathrm{tr}} / \Delta \mathrm{t}$	AGC loop constant		-	1	-	dB/ms
Input: IPhoto						
$\mathrm{V}_{\text {bias(IPhoto) }}$	input bias voltage		tbf	1048	tbf	mV
$\mathrm{I}_{\text {(IPhoto)(p-p) }}$	input current (peak-to-peak value)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-2000	+1	+2000	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-1000	+1	+1000	$\mu \mathrm{A}$

PECL outputs: OUTPECL and OUTQPECL

V_{OH}	HIGH-level output voltage	50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}-1100$	-	$\mathrm{V}_{\mathrm{CC}}-900$	mV
V_{OL}	LOW-level output voltage	50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}-1840$	-	$\mathrm{V}_{\mathrm{CC}}-1620$	mV
V_{OO}	output offset voltage	measured differentially	-10	-	+10	mV
t_{r}	rise time	20% to 80%	-	tbf	tbf	ps
t_{f}	fall time	80% to 20%	-	tbf	tbf	ps

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
PECL outputs: LOS and LOSQ						
V_{OH}	HIGH-level output voltage	50Ω to $\mathrm{V}_{C C}-2 \mathrm{~V}$	$\mathrm{V}_{C C}-1100$	-	$\mathrm{V}_{\mathrm{CC}}-900$	mV
V_{OL}	LOW-level output voltage	50Ω to $\mathrm{V}_{C C}-2 \mathrm{~V}$	$\mathrm{V}_{C C}-1840$	-	$\mathrm{V}_{C C}-1620$	mV
V_{OO}	output offset voltage	measured differentially	-10	-	+10	mV
tr_{r}	rise time	20\% to 80\%	-	-	600	ns
t_{f}	fall time	80\% to 20\%	-	-	200	ns
CML outputs: OUTCML and OUTQCML						
V_{O}	output voltage	measured single-ended; 50Ω to $V_{C C}$	$\mathrm{V}_{\mathrm{CC}}-260$	-	$\mathrm{V}_{\text {CC }}$	mV
$\mathrm{V}_{\text {o(se)(p-p) }}$	output voltage single-ended (peak-to-peak value)	50Ω to $\mathrm{V}_{\text {CC }}$	150	200	260	mV
V_{OO}	output offset voltage	measured differentially; 50Ω to $V_{C C}$	-10	-	+10	mV
R_{0}	output resistance	measured single-ended	80	100	120	Ω
tr_{r}	rise time	$\begin{aligned} & 20 \% \text { to } 80 \% ; \\ & R_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \end{aligned}$	-	tbf	-	ps
t_{f}	fall time	$\begin{aligned} & 80 \% \text { to } 20 \% ; \\ & R_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ & \hline \end{aligned}$	-	tbf	-	ps
CMOS input: OUTSEL						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		-	0.4	0.8	V
V_{IH}	HIGH-level input voltage		$\mathrm{V}_{\mathrm{CC}}-1$	$\mathrm{V}_{\mathrm{CC}}-0.5$	-	V
CMOS output: LOSTTL						
V_{OL}	LOW-level output voltage		0	-	0.2	V
V_{OH}	HIGH-level output voltage		$\mathrm{V}_{\mathrm{CC}}-0.2$	-	V_{CC}	V

Notes

1. OUTPECL, OUTQPECL, OUTCML, OUTQCML, LOS and LOSQ outputs are left unconnected. OUTPECL and OUTQPECL outputs are active.
2. OUTPECL and OUTQPECL outputs are terminated with 50Ω to V_{T}. V_{T} is an external termination voltage for PECL outputs and is 2 V below the supply voltage. OUTCML, OUTQCML, LOS and LOSQ outputs are left unconnected.
3. OUTCML and OUTQCML outputs are terminated with 50Ω to $V_{C C D}$; CML outputs are active. OUTPECL, OUTQPECL, LOS and LOSQ outputs are left unconnected.
4. The bandwidth is set to 120 MHz by default. It can be varied between 90 and 150 MHz by adjusting the voltage at pin BWC.
5. All $\mathrm{I}_{\mathrm{n} \text { (tot) }}$ measurements were made with an input capacitance of $\mathrm{C}_{\mathrm{i}}=1.2 \mathrm{pF}$. This was comprised of 0.7 pF for the photodiode itself, with 0.3 pF allowed for the PCB layout and 0.2 pF intrinsic to the package.
6. PSRR is defined as the ratio of the equivalent current change at the input ($\Delta \|_{\mathrm{I} \text { Photo }}$) to a change in supply voltage: PSRR $=\frac{\Delta I_{\text {IPhoto }}}{\Delta \mathrm{V}_{\mathrm{CC}}}$
For example, a 4 mV disturbance on V_{CC} at 10 MHz will typically generate the equivalent of 2 nA extra photodiode current.

APPLICATION INFORMATION

Fig. 6 Application diagram: PECL data outputs active.

Fig. 7 Application diagram: CML data outputs active.

PECL outputs: OUTPECL, OUTQPECL, LOS and LOSQ

PECL outputs can be terminated in different ways depending on the power supply voltage (see Fig.8).

Fig. 8 PECL termination schemes.

CML outputs: OUTCML and OUTQCML

The output impedance of the CML output driver is 100Ω (see Fig.9) which doesn't match the characteristic impedance of the strip line. While this means that the reflections of some incident edges will arrive at the driver output on the PCB, this value was selected to reduce power dissipation inside the IC. The parallel combination of 100Ω and $50 \Omega(33 \Omega)$ will generate a signal swing of 200 mV (peak-to-peak value, single-sided) with a tail current of 6 mA .

If the output impedance was 50Ω rather than 100Ω, an 8 mA tail current would be needed to generate the same voltage swing. This would increase power dissipation by 33\%.
If necessary, the output impedance of the generator can be matched to the line impedance by connecting an external 100Ω resistor in parallel with the output as shown in Fig.10. The magnitude of the output voltage swing will not change due to adaptive regulation. However, power dissipation will increase by 33%.

PACKAGE OUTLINE

LQFP32: plastic low profile quad flat package; 32 leads; body $5 \times 5 \times 1.4 \mathrm{~mm}$
SOT401-1

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{D}	H_{E}	L	L_{p}	v	w	y	$Z_{\text {D }}{ }^{(1)}$	$Z_{E}{ }^{(1)}$	θ
mm	1.60	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	0.25	$\begin{aligned} & 0.27 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	0.5	$\begin{aligned} & 7.15 \\ & 6.85 \end{aligned}$	$\begin{aligned} & 7.15 \\ & 6.85 \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & 0.45 \end{aligned}$	0.2	0.12	0.1	$\begin{aligned} & 0.95 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 7^{\circ} \\ & 0^{\circ} \end{aligned}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all LQFP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 50 and 300 seconds depending on heating method. Typical reflow peak temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering is not recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

CAUTION
Wave soldering is NOT applicable for all LQFP packages with a pitch (e) equal or less than 0.5 mm.

If wave soldering cannot be avoided, for LQFP packages with a pitch (e) larger than 0.5 mm , the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors - a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +453288 2636, Fax. +4531570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, JI. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 8002347381

Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SAO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

