- Designed Specifically for High Frequency Electronic Ballasts up to 50 W
- $\mathrm{h}_{\mathrm{FE}} \mathbf{7}$ to 21 at $\mathrm{V}_{\mathrm{CE}}=\mathbf{1} \mathrm{V}, \mathrm{I}_{\mathrm{C}}=\mathbf{8 0 0} \mathrm{mA}$
- Low Power Losses (On-state and Switching)
- Key Parameters Characterised at High Temperature
- Tight and Reproducible Parametric Distributions

TO-220 PACKAGE
(TOP VIEW)
(TOP VIEW)

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ ambient temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT
Collector-emitter voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{\mathrm{CES}}$	700	V
Collector-base voltage $\left(\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{\mathrm{CBO}}$	700	
Collector-emitter voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\mathrm{CEO}}$	V	
Emitter-base voltage	$\mathrm{V}_{\mathrm{EBO}}$	400	
Continuous collector current	I_{C}	V	
Peak collector current (see Note 1)	I_{CM}	2.5	V
Peak collector current (see Note 2)	I_{CM}	A	
Continuous base current	I_{B}	8	A
Peak base current (see Note 2)	I_{BM}	1.5	2.5
Continuous device dissipation at (or below) $25^{\circ}{ }^{\circ} \mathrm{C}$ case temperature	$\mathrm{P}_{\text {tot }}$	A	
Operating junction temperature range	T_{j}	-65 to +150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 1. This value applies for $t_{p}=10 \mathrm{~ms}$, duty cycle $\leq 2 \%$.
2. This value applies for $t_{p}=300 \mu s$, duty cycle $\leq 2 \%$.
electrical characteristics at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\begin{array}{ll} \mathrm{V}_{\mathrm{CEO}(\text { sus })} & \begin{array}{l} \text { Collector-emitter } \\ \text { sustaining voltage } \end{array} \end{array}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	$\mathrm{L}=25 \mathrm{mH}$	(see Note 3)	400			V
ICESCollector-emitter cut-off current	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=700 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=700 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{B E}=0 \\ & V_{B E}=0 \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$			$\begin{gathered} 10 \\ 200 \end{gathered}$	$\mu \mathrm{A}$
$\begin{array}{ll} \hline \mathrm{I}_{\text {EBO }} & \text { Emitter cut-off } \\ \text { current } \end{array}$	$\mathrm{V}_{\mathrm{EB}}=9 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=0$				1	mA
$V_{B E \text { (sat) }}$ Base-emitter saturation voltage	$\begin{aligned} & I_{B}=160 \mathrm{~mA} \\ & I_{B}=160 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=800 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=800 \mathrm{~mA} \end{aligned}$	(see Notes 4 and 5) $\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$		$\begin{aligned} & 0.83 \\ & 0.75 \end{aligned}$	0.9	V
$\mathrm{V}_{\mathrm{CE} \text { (sat) }} \quad$Collector-emitter saturation voltage	$\begin{aligned} & I_{B}=160 \mathrm{~mA} \\ & I_{B}=160 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & I_{C}=800 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=800 \mathrm{~mA} \end{aligned}$	(see Notes 4 and 5) $\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$		$\begin{aligned} & \hline 0.18 \\ & 0.22 \end{aligned}$	0.25	V
Forward current $h_{\text {FE }}$ transfer ratio	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CE}}= & 1 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CE}}= & 1 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CE}}= & 5 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & I_{C}=10 \mathrm{~mA} \\ & I_{C}=800 \mathrm{~mA} \\ & I_{C}=3.2 \mathrm{~A} \end{aligned}$		$\begin{gathered} \hline 10 \\ 7 \\ 2 \end{gathered}$	$\begin{gathered} \hline 18.5 \\ 14.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 21 \\ & 14 \end{aligned}$	
$\mathrm{V}_{\text {FCB }} \quad$Collector-base forward bias diode voltage	$\mathrm{I}_{\mathrm{CB}}=60 \mathrm{~mA}$				870		mV

NOTES: 3. Inductive loop switching measurement.
4. These parameters must be measured using pulse techniques, $t_{p}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
5. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts, and located within 3.2 mm from the device body.

thermal characteristics

	PARAMETER	MIN	TYP	MAX
UNIT				
$R_{\theta J A}$	Junction to free air thermal resistance			62.5
${ }^{\circ} \mathrm{C} / \mathrm{W}$				
$\mathrm{R}_{\theta \mathrm{JC}}$	Junction to case thermal resistance			2.5

inductive-load switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {sv }}$	Storage time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=800 \mathrm{~mA} \\ & \mathrm{~L}=1 \mathrm{mH} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}(\text { on })}=160 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{B}(\text { off })}=320 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{C C}=40 \mathrm{~V} \\ & V_{\mathrm{CLAMP}}=300 \mathrm{~V} \end{aligned}$		2.5	3	$\mu \mathrm{s}$
t_{fi}	Current fall time					150	190	ns
t_{xo}	Cross over time					300	400	ns
t_{sv}	Storage time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=800 \mathrm{~mA} \\ & \mathrm{~L}=1 \mathrm{mH} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}(\text { on })}=160 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{B} \text { (off) })}=100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CLAMP}}=300 \mathrm{~V} \end{aligned}$		4.3	5	$\mu \mathrm{s}$
t_{fi}	Current fall time					140	200	ns

resistive-load switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t_{sv}	Storage time	$\mathrm{I}_{\mathrm{C}}=800 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B}(\mathrm{on})}=160 \mathrm{~mA}$		2.5	3.4
t_{fi}	Current fall time	$\mathrm{V}_{\mathrm{Cc}}=300 \mathrm{~V}$	$\mathrm{I}_{\mathrm{B}(\mathrm{off})}=160 \mathrm{~mA}$	$\mu \mathrm{~s}$		
			150	250	ns	

[^0]
TYPICAL CHARACTERISTICS

Figure 1.

INDUCTIVE SWITCHING TIMES COLLECTOR CURRENT

Figure 3.

COLLECTOR-EMITTER SATURATION VOLTAGE COLLECTOR CURRENT
 Figure 2.

INDUCTIVE SWITCHING TIMES
vs

CASE TEMPERATURE

Figure 4.

TYPICAL CHARACTERISTICS

Figure 5.

Figure 7.

INDUCTIVE SWITCHING TIMES
vs
CASE TEMPERATURE

Figure 6.

RESISTIVE SWITCHING TIMES
vs
CASE TEMPERATURE

Figure 8.

[^1]
MAXIMUM SAFE OPERATING REGIONS

Figure 9.

Figure 10.

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package
This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. The centre pin is in electrical contact with the mounting tab.
B. Mounting tab corner profile according to package version.
C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm . Version 2, 17.6 mm .

IMPORTANT NOTICE

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of Pl covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 1997, Power Innovations Limited

[^0]: PRODUCT I NFORMATION

[^1]: PRODUCT I NFORMATION

