- 40 W at 25°C Case Temperature
- 2 A Continuous Collector Current
- 3 A Peak Collector Current
- Typical t<sub>f</sub> = 200 ns at 25°C

# TO-220 PACKAGE (TOP VIEW)

3

Pin 2 is in electrical contact with the mounting base.

MDTRACA

# absolute maximum ratings at 25°C case temperature (unless otherwise noted)

| RATING                                                            | SYMBOL           | VALUE       | UNIT |
|-------------------------------------------------------------------|------------------|-------------|------|
| Collector-base voltage (I <sub>E</sub> = 0)                       | V <sub>CBO</sub> | 800         | V    |
| Collector-emitter voltage (V <sub>BE</sub> = 0)                   | V <sub>CES</sub> | 800         | V    |
| Collector-emitter voltage (I <sub>B</sub> = 0)                    | V <sub>CEO</sub> | 400         | V    |
| Continuous collector current                                      | I <sub>C</sub>   | 2           | Α    |
| Peak collector current (see Note 1)                               | I <sub>CM</sub>  | 3           | Α    |
| Continuous device dissipation at (or below) 25°C case temperature | P <sub>tot</sub> | 40          | W    |
| Operating junction temperature range                              | T <sub>j</sub>   | -65 to +150 | °C   |
| Storage temperature range                                         | T <sub>stg</sub> | -65 to +150 | °C   |

 $\mathsf{E} \subset$ 

NOTE 1: This value applies for  $t_p \le 2$  ms, duty cycle  $\le 2\%$ .



# BUX84 NPN SILICON POWER TRANSISTOR

AUGUST 1978 - REVISED MARCH 1997

# electrical characteristics at 25°C case temperature (unless otherwise noted)

| PARAMETER             |                                      | TEST CONDITIONS                   |                 |                              | MIN                    | TYP | MAX | UNIT     |     |
|-----------------------|--------------------------------------|-----------------------------------|-----------------|------------------------------|------------------------|-----|-----|----------|-----|
| V <sub>CEO(sus)</sub> | Collector-emitter sustaining voltage | I <sub>C</sub> =                  | 0.1 A           | L = 25 mH                    | (see Note 2)           | 400 |     |          | V   |
| I <sub>CES</sub>      | Collector-emitter cut-off current    |                                   | 800 V<br>800 V  | $V_{BE} = 0$<br>$V_{BE} = 0$ | T <sub>C</sub> = 125°C |     |     | 0.2<br>1 | mA  |
| I <sub>EBO</sub>      | Emitter cut-off current              | V <sub>EB</sub> =                 | 5 V             | I <sub>C</sub> = 0           |                        |     |     | 1        | mA  |
| h <sub>FE</sub>       | Forward current transfer ratio       | V <sub>CE</sub> =                 | 5 V             | I <sub>C</sub> = 0.1 A       | (see Notes 3 and 4)    |     | 35  |          |     |
| V <sub>CE(sat)</sub>  | Collector-emitter saturation voltage | I <sub>B</sub> = I <sub>B</sub> = | 0.03 A<br>0.2 A | $I_C = 0.3 A$<br>$I_C = 1 A$ | (see Notes 3 and 4)    |     |     | 0.8<br>1 | V   |
| V <sub>BE(sat)</sub>  | Base-emitter saturation voltage      | I <sub>B</sub> =                  | 0.2 A           | I <sub>C</sub> = 1 A         | (see Notes 3 and 4)    |     |     | 1.1      | V   |
| f <sub>t</sub>        | Current gain bandwidth product       | V <sub>CE</sub> =                 | 10 V            | I <sub>C</sub> = 0.2 A       |                        |     | 12  |          | MHz |
| C <sub>ob</sub>       | Output capacitance                   | V <sub>CB</sub> =                 | 20 V            | I <sub>E</sub> = 0           | f = 0.1 MHz            |     | 60  |          | pF  |

NOTES: 2. Inductive loop switching measurement.

- 3. These parameters must be measured using pulse techniques,  $t_p$  = 300  $\mu$ s, duty cycle  $\leq$  2%.
- 4. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.
- 5. To obtain  $f_t$  the  $[h_{FE}]$  response is extrapolated at the rate of -6 dB per octave from f = 1 MHz to the frequency at which  $[h_{FE}] = 1$ .

## thermal characteristics

| PARAMETER       |                                     |  | TYP | MAX | UNIT |
|-----------------|-------------------------------------|--|-----|-----|------|
| $R_{\theta JC}$ | Junction to case thermal resistance |  |     | 2.5 | °C/W |

# resistive-load-switching characteristics at 25°C case temperature (unless otherwise noted)

|                 | PARAMETER    |                                                           | TEST CONDITIONS †                                        |                       | MIN | TYP  | MAX | UNIT |
|-----------------|--------------|-----------------------------------------------------------|----------------------------------------------------------|-----------------------|-----|------|-----|------|
| t <sub>on</sub> | Turn on time | Ι. – 1 Δ                                                  | Ι02Δ                                                     | Ι – -0.4.Δ            |     | 0.25 | 0.5 | μs   |
| t <sub>s</sub>  | Storage time | $I_{\rm C} = 1 \text{ A}$<br>$V_{\rm CC} = 250 \text{ V}$ | I <sub>B(on)</sub> = 0.2 A<br>(see Figures 1 and 2)      | $I_{B(off)} = -0.4 A$ |     | 1.8  |     | μs   |
| t <sub>f</sub>  | Fall time    |                                                           |                                                          |                       |     | 0.2  |     | μs   |
| t <sub>f</sub>  | Fall time    | $I_C = 1 \text{ A}$<br>$V_{CC} = 250 \text{ V}$           | $I_{B(on)} = 0.2 \text{ A}$ $T_{C} = 95^{\circ}\text{C}$ | $I_{B(off)} = -0.4 A$ |     |      | 0.4 | μs   |

<sup>&</sup>lt;sup>†</sup> Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

## PARAMETER MEASUREMENT INFORMATION

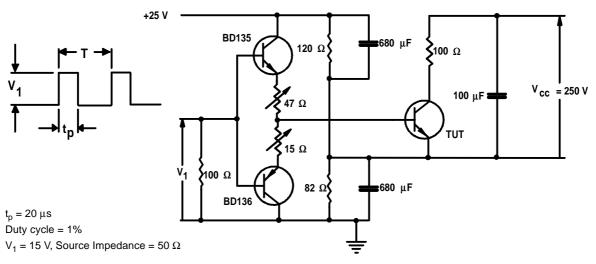



Figure 1. Resistive-Load Switching Test Circuit

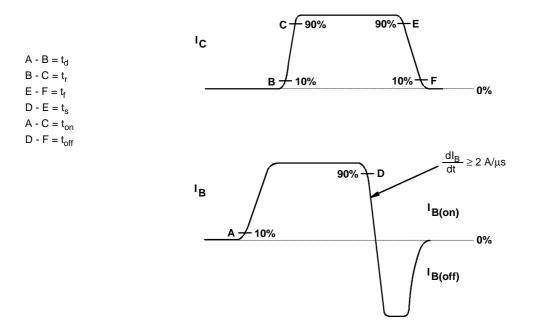
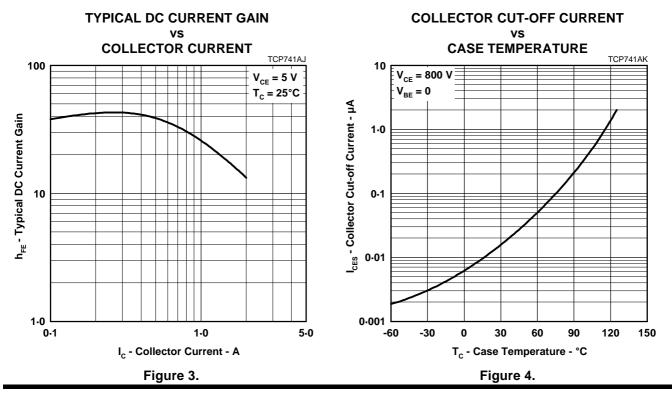
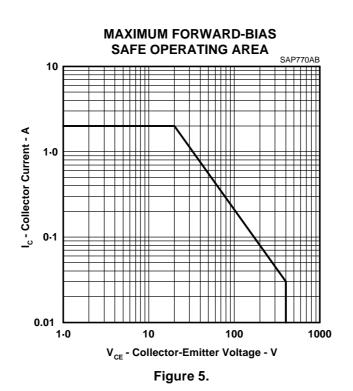





Figure 2. Resistive-Load Switching Waveforms

## **TYPICAL CHARACTERISTICS**



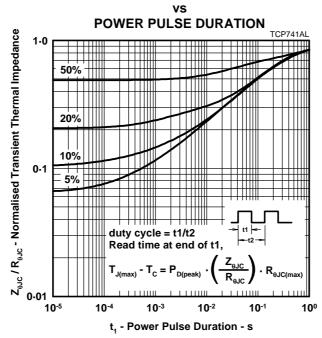
## **MAXIMUM SAFE OPERATING REGIONS**

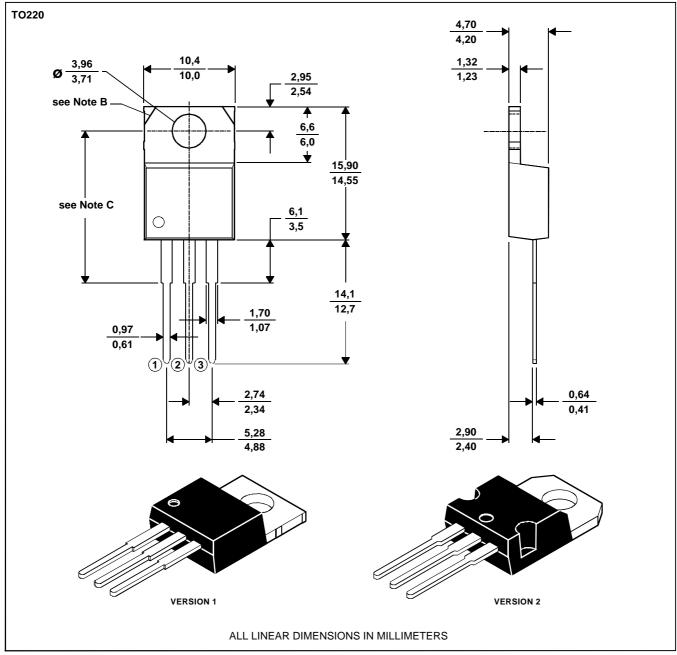


# PRODUCT INFORMATION

## THERMAL INFORMATION

# THERMAL RESPONSE JUNCTION TO CASE





Figure 6.

#### **MECHANICAL DATA**

## **TO-220**

## 3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.



NOTES: A. The centre pin is in electrical contact with the mounting tab.

B. Mounting tab corner profile according to package version.

C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm. **MDXXBE** 

## PRODUCT INFORMATION

AUGUST 1978 - REVISED MARCH 1997

## **IMPORTANT NOTICE**

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 1997, Power Innovations Limited

