

REFLECTIVE OBJECT SENSOR

QRD1313

PACKAGE DIMENSIONS

NOTES:

- 1. PINS 2 AND 4 TYPICALLY .050" SHORTER THAN PINS 1 AND 3
 2. DIMENSIONS ARE IN INCHES (mm).
- 3. TOLERANCE IS +.010" [.25] UNLESS OTHERWISE SPECIFIED.
- 4. THESE DIMENSIONS ARE CONTROLLED AT HOUSING SURFACE.

DESCRIPTION

The QRD1313 reflective sensors consists of an infrared emitting diode and an NPN silicon photodarlington mounted side by side in a black plastic housing. The on-axis radiation of the emitter and the on-axis response of the detector are both perpendicular to the face of the QRD1313. The photodarlington responds to radiation emitted from the diode only when a reflective object or surface is in the field of view of the detector.

FEATURES

- Photodarlington output.
- Unfocused for sensing diffused surfaces.
- Low cost plastic housing.
- Designed for paper path and other non-contact surface sensing.

REFLECTIVE OBJECT SENSOR

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C Unless Oth	nerwise Specified)
Storage Temperature	-40°C to + 100°C -40°C to + 100°C
Lead Temperature (Iron) Lead Temperature (Flow)	
INPUT DIODE Continuous Forward Current Reverse Voltage Power Dissipation	
OUTPUT DARLINGTON Collector-Emitter Voltage Emitter-Collector Voltage Power Dissipation	5.0 Volts

ELECTRICAL CHARACTERISTICS (T _A = 25°C Unless Otherwise Specified) (All measurements made under pulse conditions.)							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
INPUT DIODE							
Forward Voltage	$V_{\scriptscriptstyle F}$	_		1.70	V	$I_F = 20 \text{ mA}$	
Reverse Leakage Current	I _R	_		100	μΑ	V _R = 2.0 V	
OUTPUT DARLINGTON							
Collector-Emitter Breakdown	BV_ceo	15.0		_	٧	$I_c = 100 \ \mu A, Ee = 0$	
Emitter-Collector Breakdown	BV _{CEO}	5.0		_	٧	$I_{\epsilon} = 100 \ \mu A, Ee = 0$	
Collector-Emitter Leakage	I _{CEO}	_		250	nA	$V_{CE} = 5.0 \text{ V, Ee} = 0$	
COUPLED							
On-State Collector Current	I _{C(ON)}	10.0		_	mA	$I_{\rm F} = 20$ mA, $V_{\rm CC} = 5.0 V$, $D = .050''$ (5.7)	
Crosstalk	l _{cx}			10	μΑ	$I_F = 20 \text{ mA}, V_{CC} = 5.0 \text{V}, Ee = 0^{(6)}$	
Saturation Voltage	V _{CE(SAT)}	_		1.10	٧	$I_F = 20 \text{ mA}, I_C = 2\text{mA}, D = .050''^{(5.7)}$	

NOTES

- 1. Derate power dissipation linearly 1.33 mW/°C above 25°C.
- 2. RMA flux is recommended.
- 3. Soldering iron 1/16" (1.6mm) minimum from housing.
- 4. As long as leads are not under any stress or spring tension.
- 5. D is the distance from the sensor face to the reflective surface.
- 6. Crosstalk(l_{cx}) is the collector current measured with the indicated current on the input diode and with no reflective surface.
 7. Measured using Eastman Kodak neutral white test card with 90% diffused reflecting as a reflecting surface.