

AIGAAS INFRARED EMITTING DIODE

QED221/222

PACKAGE DIMENSIONS

NOTES:

- 1. DIMENSIONS ARE IN INCHES (mm).
 2. TOLERANCE IS ±.010 (.25)
 UNLESS OTHERWISE SPECIFIED.
- 3. FLAT DENOTES CATHODE.

DESCRIPTION

The QED22X is an 880nm AlGaAs LED encapsulated in a clear, purple tinted, plastic T-1¾ package.

FEATURES

- Tight production E, distribution.
- Steel lead frames for improved reliability in solder mounting.
- Good optical-to-mechanical alignment.
- Wide emission angle.
- Mechanical and wavelength matched to QSD12X series phototransistor.
- Plastic package color allows easy recognition from phototransistor.
- High irradiance level.

AIGAAS INFRARED EMITTING DIODE

ABSOLUTE MAXIMUM RATINGS (TA = 25°	C Unless Otherwise Specified
Storage Temperature	
Operating Temperature	
Soldering:	
	240°C for 10 sec. (23)
Continuous Forward Current	
Reverse Voltage	

ELECTRICAL CHARACTERISTICS (T _A = 25°C Unless Otherwise Specified) (All measurements made under pulse conditions.)							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
Forward Voltage	$V_{\scriptscriptstyle F}$	_		1.70	٧	$I_F = 20 \text{ mA}$	
Reverse Leakage Current	I _R	_		10	μΑ	V _R = 5.0 V	
Peak Emission Wavelength	λ _P	_	880	_	nm	$I_F = 20 \text{ mA}$	
Emission Angle at ½ Power	θ	_	±20	_	Degrees		
Radiant Incidence QED221	E,	0.065		_	mW/10° Cone	$I_F = 20 \text{ mA}^{(6,7)}$	
Radiant Incidence QED222	E,	0.085		0.24	mW/10° Cone	$I_F = 20 \text{ mA}^{(6,7)}$	

NOTES

- 1. Derate power dissipation linearly 2.67 mW/°C above 25°C.
- 2. RMA flux is recommended.

- RMA flux is recommended.
 Methanol or Isopropyl alcohols are recommended as cleaning agents.
 Soldering iron tip ¼ε" (1.6 mm) minimum from housing.
 As long as leads are not under any stress or spring tension.
 Measurement is taken at the end of a single 100 μsec pulse.
 Ε_σ is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E_σ is not necessarily uniform within the measurement area.