

3.3 V and 5.0 V pASIC ${ }^{\text {® }} 2$ FPGA Combining Speed，Density，Low Cost and Flexibility

Rev．C
pASIC 2
HIGHLIGHTS
．．．9，000 usable ASIC gates， 225 I／O pins

Block Diagram

672
Logic
Cells

\boldsymbol{x} Ultimate Verilog／VHDL Silicon Solution

－Abundant，high－speed interconnect eliminates manual routing －Flexible logic cell provides high efficiency and performance －Design tools produce fast，efficient Verilog／VHDL synthesis

区Speed，Density，Low Cost and Flexibility in One Device －16－bit counter speeds exceeding 200 MHz
－9，000 usable ASIC gates，16，000 usable PLD gates， 225 I／Os
－3－layer metal ViaLink ${ }^{\circledR}$ process for small die sizes
－ 100% routable and pin－out maintainable

$\boldsymbol{凹}^{\text {Advanced Logic Cell and I／O Capabilities }}$

－Complex functions（up to 16 inputs）in a single logic cell
－High synthesis gate utilization from logic cell fragments
－Full IEEE Standard JTAG boundary scan capability
－Individually－controlled input／feedback registers and OEs on all I／O pins

区 Other Important Family Features

-3.3 V and 5.0 V operation with low standby power －I／O pin－compatibility between different devices in the same packages －PCI compliant（at 5.0 V ），full speed 33 MHz implementations －High design security provided by security fuses

PRODUCT

 SUMMARY
FEATURES

The QL2009 is a 9，000 usable ASIC gate，16，000 usable PLD gate member of the pASIC 2 family of FPGAs．pASIC 2 FPGAs employ a unique combination of architecture，technology，and software tools to provide high speed，high usable density，low price，and flexibility in the same devices．The flexibility and speed make pASIC 2 devices an efficient and high performance silicon solution for designs described using HDLs such as Verilog and VHDL，as well as schematics．

The QL2009 contains 672 logic cells．With 225 maximum I／Os，the QL2009 is available in 144－pin TQFP，208－PQFP，and 256－pin PBGA packages．

Software support for the complete pASIC families，including the QL2009，is available through three basic packages．The turnkey QuickWorks ${ }^{\circledR}$ package provides the most complete FPGA software solution from design entry to logic synthesis（by Synplicity，Inc．），to place and route，to simulation．The QuickTools ${ }^{\mathrm{TM}}$ and QuickChip ${ }^{\mathrm{TM}}$ packages provide a solution for designers who use Cadence，Mentor，Synopsys，Viewlogic，Veribest，or other third－party tools for design entry，synthesis，or simulation．

区 Total of 225 I／O Pins

－ 217 bidirectional input／output pins，PCI－compliant at 5.0 V in $-1 /-2$ speed grades
－ 4 high－drive input－only pins
－ 4 high－drive input／distributed network pins

区 Four Low－Skew（less than 0．5ns）Distributed Networks

－Two array networks available to logic cell flip－flop clock，set，and reset－each driven by an input－only pin
－Two global clock／control networks available to F1 logic input，and logic cell flip－flop clock，set，reset；input and I／O register clock，reset， enable；and output enable controls－each driven by an input－only pin，or any input or I／O pin，or any logic cell output or I／O cell feedback

区 High Performance

－Input＋logic cell＋output delays under 6 ns
－Datapath speeds exceeding 225 MHz
－Counter speeds over 200 MHz

PINOUT DIAGRAMS

PIN \# 157

PIN \# 105

PQFP 208 and TQFP 144 Pinout Table

$\begin{gathered} 208 \\ \text { PQFP } \end{gathered}$	$\begin{array}{c\|} \hline 144 \\ \text { TQFP } \end{array}$	Function	$\begin{array}{\|c\|} \hline 208 \\ \text { PQFP } \end{array}$	$\begin{array}{c\|} \hline 144 \\ \text { TQFP } \end{array}$	Function	$\begin{array}{\|c\|} \hline 208 \\ \text { PQFP } \end{array}$	$\begin{array}{\|c\|} \hline 144 \\ \text { TQFP } \end{array}$	Function	$\begin{array}{\|c\|} \hline 208 \\ \text { PQFP } \end{array}$	$\begin{array}{\|c\|} \hline 144 \\ \text { TQFP } \end{array}$	Function	$\begin{array}{\|c\|} \hline 208 \\ \text { PQFP } \end{array}$	$\begin{array}{\|c\|} \hline 144 \\ \text { TQFP } \end{array}$	Function
1	NC	I/O	43	30	GND	85	60	I/O	127	87	GND	169	117	I/O
2	1	1/O	44	31	I/O	86	61	1/O	128	88	I/O	170	118	1/O
3	2	1/O	45	NC	1/O	87	NC	1/O	129	89	I	171	119	1/O
4	3	I/O	46	32	I/O	88	62	I/O	130	90	ACLK / I	172	120	I/O
5	NC	I/O	47	NC	1/0	89	63	1/O	131	91	VCC	173	NC	1/O
6	4	I/O	48	33	I/O	90	NC	1/O	132	92	I	174	NC	I/O
7	5	1/0	49	NC	I/O	91	NC	I/O	133	93	GCLK /I	175	121	1/0
8	NC	1/0	50	34	I/O	92	64	I/O	134	94	VCC	176	NC	I/O
9	6	1/O	51	35	I/O	93	NC	1/0	135	95	I/O	177	122	GND
10	7	VCC	52	36	I/O	94	65	I/O	136	NC	1/O	178	123	I/O
11	NC	I/O	53	37	I/O	95	66	GND	137	96	1/O	179	124	I/O
12	NC	GND	54	38	TDI	96	67	I/O	138	NC	1/O	180	NC	1/O
13	8	I/O	55	39	I/O	97	NC	VCC	139	97	1/O	181	125	1/O
14	NC	1/0	56	NC	1/O	98	NC	1/O	140	98	1/O	182	126	GND
15	9	1/0	57	40	I/O	99	68	1/0	141	NC	I/O	183	127	I/O
16	NC	1/0	58	NC	I/O	100	69	1/0	142	99	I/O	184	128	I/O
17	10	1/0	59	NC	GND	101	NC	1/0	143	NC	1/O	185	129	1/0
18	11	1/O	60	41	I/O	102	70	1/O	144	100	1/O	186	NC	1/O
19	12	1/O	61	42	VCC	103	71	TRSTB	145	NC	VCC	187	130	VCC
20	13	1/O	62	43	I/O	104	72	TMS	146	101	I/O	188	131	1/O
21	NC	1/0	63	NC	I/O	105	NC	1/0	147	102	GND	189	132	I/O
22	14	1/0	64	44	I/O	106	73	1/0	148	103	I/O	190	NC	I/O
23	15	GND	65	45	I/O	107	NC	1/0	149	104	I/O	191	133	1/0
24	16	I/O	66	NC	1/O	108	74	1/0	150	NC	1/O	192	134	1/O
25	17	1	67	46	1/O	109	75	1/O	151	105	1/O	193	NC	1/O
26	18	ACLK / I	68	47	I/O	110	76	1/0	152	106	1/O	194	135	1/O
27	19	VCC	69	48	I/O	111	77	1/O	153	NC	1/O	195	136	1/O
28	20	1	70	NC	I/O	112	NC	1/O	154	107	1/O	196	NC	1/0
29	21	GCLK / I	71	49	1/0	113	78	I/O	155	NC	1/O	197	137	1/O
30	22	VCC	72	NC	I/O	114	79	VCC	156	108	I/O	198	NC	I/O
31	23	1/O	73	50	GND	115	80	I/O	157	109	TCK	199	138	GND
32	NC	I/O	74	51	I/O	116	NC	GND	158	110	STM	200	139	I/O
33	24	1/0	75	52	I/O	117	81	I/O	159	111	I/O	201	NC	VCC
34	NC	I/O	76	NC	I/O	118	82	1/O	160	NC	1/O	202	140	1/O
35	25	1/0	77	53	I/O	119	NC	1/O	161	112	1/O	203	NC	I/O
36	NC	1/0	78	54	GND	120	83	1/0	162	113	I/O	204	141	1/0
37	26	1/0	79	55	I/O	121	NC	1/O	163	NC	GND	205	142	1/O
38	27	1/0	80	56	1/O	122	84	1/0	164	NC	I/O	206	NC	1/O
39	28	1/O	81	NC	1/O	123	85	I/O	165	114	VCC	207	143	TDO
40	NC	1/O	82	57	I/O	124	NC	1/O	166	115	1/O	208	144	1/O
41	NC	VCC	83	58	VCC	125	86	1/O	167	116	1/O			
42	29	1/O	84	59	1/O	126	NC	1/0	168	NC	1/O			

PINOUT DIAGRAM

256-PIN PBGA

PBGA 256 Pinout Table

$\begin{gathered} 256 \\ \text { PBGA } \end{gathered}$	Function	$\begin{gathered} 256 \\ \text { PBGA } \end{gathered}$	Function	$\begin{gathered} 256 \\ \text { PBGA } \end{gathered}$	Function	$\begin{gathered} 256 \\ \text { PBGA } \end{gathered}$	Function	$\begin{gathered} 256 \\ \text { PBGA } \end{gathered}$	Function	$\begin{gathered} 256 \\ \text { PBGA } \end{gathered}$	Function
A1	VSS	C4	I/O	E19	I/O	L2	ACLK / I	T17	I/O	V20	I/O
A2	I/O	C5	I/O	E20	I/O	L3	I	T18	I/O	W1	I/O
A3	I/O	C6	I/O	F1	I/O	L4	GCLK / I	T19	I/O	W2	I/O
A4	I/O	C7	I/O	F2	I/O	L17	VCC	T20	I/O	W3	TDI
A5	I/O	C8	I/O	F3	I/O	L18	I/O	U1	I/O	W4	I/O
A6	I/O	C9	I/O	F4	VCC	L19	I/O	U2	I/O	W5	I/O
A7	I/O	C10	I/O	F17	VCC	L20	I/O	U3	I/O	W6	I/O
A8	I/O	C11	I/O	F18	I/O	M1	I/O	U4	VSS	W7	I/O
A9	I/O	C12	I/O	F19	I/O	M2	I/O	U5	I/O	W8	I/O
A10	I/O	C13	I/O	F20	I/O	M3	I/O	U6	VCC	W9	I/O
A11	I/O	C14	I/O	G1	I/O	M4	I/O	U7	I/O	W10	I/O
A12	I/O	C15	I/O	G2	I/O	M17	I/O	U8	VSS	W11	I/O
A13	I/O	C16	I/O	G3	I/O	M18	I/O	U9	I/O	W12	I/O
A14	I/O	C17	I/O	G4	I/O	M19	I/O	U10	VCC	W13	I/O
A15	I/O	C18	I/O	G17	I/O	M20	I/O	U11	I/O	W14	I/O
A16	I/O	C19	I/O	G18	I/O	N1	I/O	U12	I/O	W15	I/O
A17	I/O	C20	I/O	G19	I/O	N2	I/O	U13	VSS	W16	I/O
A18	I/O	D1	I/O	G20	I/O	N3	I/O	U14	I/O	W17	I/O
A19	TCK	D2	I/O	H1	I/O	N4	VSS	U15	VCC	W18	I/O
A20	I/O	D3	I/O	H2	I/O	N17	VSS	U16	I/O	W19	I/O
B1	TDO	D4	VSS	H3	I/O	N18	I/O	U17	VSS	W20	TRSTB
B2	I/O	D5	I/O	H4	VSS	N19	I/O	U18	I/O	Y1	I/O
B3	I/O	D6	VCC	H17	VSS	N20	I/O	U19	I/O	Y2	I/O
B4	I/O	D7	I/O	H18	I/O	P1	I/O	U20	I/O	Y3	I/O
B5	I/O	D8	VSS	H19	I/O	P2	I/O	V1	I/O	Y4	I/O
B6	I/O	D9	I/O	H20	I/O	P3	I/O	V2	I/O	Y5	I/O
B7	I/O	D10	I/O	J1	I/O	P4	I/O	V3	I/O	Y6	I/O
B8	I/O	D11	VCC	J2	I/O	P17	I/O	V4	I/O	Y7	I/O
B9	I/O	D12	I/O	J3	I/O	P18	I/O	V5	I/O	Y8	I/O
B10	I/O	D13	VSS	J4	I/O	P19	I/O	V6	I/O	Y9	I/O
B11	I/O	D14	I/O	J17	I/O	P20	I/O	V7	I/O	Y10	I/O
B12	I/O	D15	VCC	J18	I/O	R1	I/O	V8	I/O	Y11	I/O
B13	I/O	D16	I/O	J19	I/O	R2	I/O	V9	I/O	Y12	I/O
B14	I/O	D17	VSS	J20	GCLK / I	R3	I/O	V10	I/O	Y13	I/O
B15	I/O	D18	I/O	K1	I/O	R4	VCC	V11	I/O	Y14	I/O
B16	I/O	D19	I/O	K2	I/O	R17	VCC	V12	I/O	Y15	I/O
B17	I/O	D20	I/O	K3	I/O	R18	I/O	V13	I/O	Y16	I/O
B18	STM	E1	I/O	K4	VCC	R19	I/O	V14	I/O	Y17	I/O
B19	I/O	E2	I/O	K17	I	R20	I/O	V15	I/O	Y18	I/O
B20	I/O	E3	I/O	K18	ACLK / I	T1	I/O	V16	I/O	Y19	I/O
C1	I/O	E4	I/O	K19	I	T2	I/O	V17	I/O	Y20	I/O
C2	I/O	E17	I/O	K20	I/O	T3	I/O	V18	I/O		
C3	I/O	E18	I/O	L1	I	T4	I/O	V19	TMS		

PIN DESCRIPTIONS

Pin	Function	Description
TDI	Test Data In for JTAG	Hold HIGH during normal operation. Connect to VCC if not used for JTAG.
TRSTB	Active low Reset for JTAG	Hold LOW during normal operation. Connect to ground if not used for JTAG.
TMS	Test Mode Select for JTAG	Hold HIGH during normal operation. Connect to VCC if not used for JTAG.
TCK	Test Clock for JTAG	Hold HIGH or LOW during normal operation. Connect to VCC or ground if not used for JTAG.
TDO	Test data out for JTAG	Output that must be left unconnected if not used for JTAG.
STM	Special Test Mode	Must be grounded during normal operation.
I/ACLK	High-drive input and/or array network driver	Can be configured as either or both.
I/GCLK	High-drive input and/or global network driver	Can be configured as either or both.
I	High-drive input	Use for input signals with high fanout.
I/O	Input/Output pin	Can be configured as an input and/or output.
VCC	Power supply pin	Connect to 3.3V supply.
GND	Ground pin	Connect to ground.

$$
\begin{aligned}
& \text { Operating Range } \\
& \text { C }=\text { Commercial } \\
& \text { I }=\text { Industrial } \\
& \\
& \text { Package Code } \\
& \text { PF144 }=144-\text {-pin TQFP } \\
& \text { PQ208 }=208 \text {-pin PQFP } \\
& \text { PB256 }=256 \text {-pin PBGA }
\end{aligned}
$$

$\mathrm{X}=$ quick
$0=$ fast
$1=$ faster
$2=$ fastest

QL 2009-1 PQ208 C

QuickLogic pASIC device
pASIC 2 device part number

Speed Grade

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	-0.5 to 7.0V
Input Voltage	-0.5 to VCC +0.5 V
ESD Pad Protection	$\pm 2000 \mathrm{~V}$
DC Input Current	$\pm 20 \mathrm{~mA}$
Latch-up Immunity	$\pm 200 \mathrm{~mA}$

Storage Temperature............. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .300^{\circ} \mathrm{C}$

ESD Pad Protection $\pm 2000 \mathrm{~V}$
DC Input Current $\pm 20 \mathrm{~mA}$
Latch-up Immunity $\pm 200 \mathrm{~mA}$

5 Volt OPERATING RANGE

Symbol	Parameter		Industrial		Commercial		Unit
			Min	Max	Min	Max	
VCC	Supply Voltage		4.5	5.5	4.75	5.25	V
TA	Ambient Temperature		-40	85	0	70	${ }^{\circ} \mathrm{C}$
TC	Case Temperature						${ }^{\circ} \mathrm{C}$
K	Delay Factor	-X Speed Grade	0.4	2.75	0.46	2.55	
		-0 Speed Grade	0.4	2.00	0.46	1.85	
		-1 Speed Grade	0.4	1.61	0.46	1.50	
		-2 Speed Grade	0.4	1.35	0.46	1.25	

DC CHARACTERISTICS over 5V operating range

Symbol	Parameter	Conditions	Min	Max	Unit
VIH	Input HIGH Voltage		2.0		V
VIL	Input LOW Voltage			0.8	V
VOH	Output HIGH Voltage	$1 \mathrm{OH}=-4 \mathrm{~mA}$	3.7		V
		$\mathrm{IOH}=-24 \mathrm{~mA} /-16 \mathrm{~mA}$ [1]	2.4		V
		$1 \mathrm{OH}=-10 \mu \mathrm{~A}$	VCC-0.1		V
VOL	Output LOW Voltage	$\mathrm{IOL}=24 \mathrm{~mA} / 16 \mathrm{~mA}$ [1]		0.45	V
		$\mathrm{IOL}=10 \mu \mathrm{~A}$		0.1	V
II	Input Leakage Current	$\mathrm{VI}=\mathrm{VCC}$ or GND	-10	10	$\mu \mathrm{A}$
IOZ	3-State Output Leakage Current	$\mathrm{VI}=\mathrm{VCC}$ or GND	-10	10	$\mu \mathrm{A}$
Cl	Input Capacitance [2]			10	pF
IOS	Output Short Circuit Current [3]	$\mathrm{VO}=\mathrm{GND}$	-15	-120	mA
		$\mathrm{VO}=\mathrm{VCC}$	40	210	mA
ICC	D.C. Supply Current [4]	$\mathrm{VI}, \mathrm{VIO}=\mathrm{VCC}$ or GND	2 (typ)	10	mA

Notes:
[1] -24 mA IOH and 24 mA IOL apply only to $-1 /-2$ commercial grade devices. These speed grades are also PCI-compliant. All other devices have -16 mA IOH and 16 mA IOL specifications.
[2] Capacitance is sample tested only.
[3] Only one output at a time. Duration should not exceed 30 seconds.
[4] For $-0 /-1 /-2$ commercial grade devices only. Maximum ICC is 20 mA for -X commercial grade devices and 15 mA for all industrial grade devices. For AC conditions, contact QuickLogic customer engineering.

3.3 VoIt OPERATING RANGE

Symbol	Parameter		Industrial		Commercial		Unit
			Min	Max	Min	Max	
VCC	Supply Voltage		3.0	3.6	3.0	3.6	V
TA	Ambient Temperature		-40	85	0	70	${ }^{\circ} \mathrm{C}$
K	Delay Factor	-0 Speed Grade	0.56	2.74	0.61	2.65	
		-1 Speed Grade	0.56	2.21	0.61	2.14	
		-2 Speed Grade	0.56	1.85	0.61	1.79	

DC CHARACTERISTICS over 3.3 V operating range

Symbol	Parameter	Conditions	Min	Max	Unit
VIH	Input HIGH Voltage		2.0		V
VIL	Input LOW Voltage		2.4		V
VOH	Output HIGH Voltage	$\mathrm{IOH}=-2.4 \mathrm{~mA}$	$\mathrm{VCC}-0.1$		V
		$\mathrm{IOH}=-10 \mu \mathrm{~A}$		0.4	V
VOL	Output LOW Voltage	$\mathrm{IOL}=4 \mathrm{~mA}$		0.1	V
		$\mathrm{IOL}=10 \mu \mathrm{~A}$		m	
IH	Input High Current Sink (for tolerance to 5V devices)	$5.5 \mathrm{~V}>\mathrm{VI}>\mathrm{VCC}$		mA	
	Input Leakage Current	$\mathrm{VI}=\mathrm{VCC}$ or GND	-10	10	$\mu \mathrm{~A}$
IOZ	3-State Output Leakage Current	$\mathrm{VI}=\mathrm{VCC}$ or GND	-10	10	$\mu \mathrm{~A}$
CI	Input Capacitance [5]			10	pF
IOS	Output Short Circuit Current [6]	$\mathrm{VO}=\mathrm{GND}$	-10	-70	mA
		$\mathrm{VO}=\mathrm{VCC}$	25	130	mA
ICC	D.C. Supply Current [7]	$\mathrm{VI}, \mathrm{VIO}=\mathrm{VCC}$ or GND	0.5 (typ)	3	mA

Notes:
[5] Capacitance is sample tested only.
[6] Only one output at a time. Duration should not exceed 30 seconds.
[7] For commercial grade devices only. Maximum ICC is 5 mA for all industrial grade devices. For AC conditions, contact QuickLogic customer engineering.

AC CHARACTERISTICS at VCC $=\mathbf{5 V}$, $\mathrm{TA}=\mathbf{2 5}{ }^{\circ} \mathrm{C}(\mathrm{K}=1.00)$

Propagation delays depend on routing, fanout, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified in the Delay Factor table (Operating Range). The QuickChip/QuickTools/QuickWorks software incorporates data sheet AC Characteristics into the design database for precise path analysis or simulation results following place and route.

Logic Cells

Symbol		Parameter							Propagation Delays (ns)				
		Fanout $[8]$											
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{8}$							
tPD	Combinatorial Delay [9]	1.4	1.7	2.0	2.3	3.5							
tSU	Setup Time [9]	1.8	1.8	1.8	1.8	1.8							
tH	Hold Time	0.0	0.0	0.0	0.0	0.0							
tCLK	Clock to Q Delay	0.8	1.1	1.4	1.7	2.9							
tCWHI	Clock High Time	2.0	2.0	2.0	2.0	2.0							
tCWLO	Clock Low Time	2.0	2.0	2.0	2.0	2.0							
tSET	Set Delay	1.4	1.7	2.0	2.3	3.5							
tRESET	Reset Delay	1.2	1.5	1.8	2.1	3.3							
tSW	Set Width	1.9	1.9	1.9	1.9	1.9							
tRW	Reset Width	1.8	1.8	1.8	1.8	1.8							

Input-Only Cells

Symbol	Parameter	Propagation Delays (ns) Fanout [8]						
		1	2	3	4	8	12	24
tIN	High Drive Input Delay	2.5	2.6	2.6	2.7	3.5	4.6	5.8
tINI	High Drive Input, Inverting Delay	2.6	2.7	2.7	2.8	3.6	4.7	5.9
tISU	Input Register Set-Up Time	4.8	4.8	4.8	4.8	4.8	4.8	4.8
tIH	Input Register Hold Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0
tICLK	Input Register Clock To Q	0.9	1.0	1.0	1.1	1.9	3.0	4.2
tIRST	Input Register Reset Delay	0.8	0.9	0.9	1.0	1.8	2.9	4.1
tIESU	Input Register clock Enable Set-Up Time	4.1	4.1	4.1	4.1	4.1	4.1	4.1
tIEH	Input Register Clock Enable Hold Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Notes:
[8] Stated timing for worst case Propagation Delay over process variation at $\mathrm{VCC}=5.0 \mathrm{~V}$ and $\mathrm{TA}=25^{\circ} \mathrm{C}$. Multiply by the appropriate Delay Factor, K, for speed grade, voltage and temperature settings as specified in the Operating Range.
[9] These limits are derived from a representative selection of the slowest paths through the pASIC 2 logic cell including typical net delays. Worst case delay values for specific paths should be determined from timing analysis of your particular design.

QL2009

Clock Cells

Symbol	Parameter	Propagation Delays (ns) 						
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		
		2.2	2.2	2.3	2.4	2.5	2.6	
tACK		1.2	1.2	1.2	1.2	1.2	1.2	1.2
tGCKP		1.5	1.6	1.6	1.7	1.8	1.9	2.0
tGCKB								

I/O Cells

Symbol	Parameter	Propagation Delays (ns) Fanout [8]					
		1	2	3	4	8	10
tl/O	Input Delay (bidirectional pad)	1.8	2.1	2.4	2.7	3.9	4.6
tISU	Input Register Set-Up Time	4.8	4.8	4.8	4.8	4.8	4.8
tIH	Input Register Hold Time	0.0	0.0	0.0	0.0	0.0	0.0
tIOCLK	Input Register Clock To Q	0.8	1.1	1.4	1.7	2.9	3.6
tIORST	Input Register Reset Delay	0.7	1.0	1.3	1.6	2.8	3.5
tIESU	Input Register clock Enable Set-Up Time	4.1	4.1	4.1	4.1	4.1	4.1
tIEH	Input Register Clock Enable Hold Time	0.0	0.0	0.0	0.0	0.0	0.0

Symbol	Parameter	Propagation Delays (ns) Output Load Capacitance (pF)				
		$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
tOUTLH		2.6	3.0	3.6	4.1	5.2
tOUTHL		2.8	3.3	3.9	4.5	5.7
tPZH		2.1	2.6	3.1	3.7	4.8
tPZL		2.6	3.3	4.1	4.9	6.5
tPHZ		2.9				
tPLZ	Output Delay Low to Tri-State [11]	3.3				

Notes:
[10] The array distributed networks consist of 48 half columns and the global distributed networks consist of 52 half columns, each driven by an independent buffer. The number of half columns used does not affect clock buffer delay. The array clock has up to 10 loads per half column. The global clock has up to 13 loads per half column.
[11] The following loads are used for tPXZ:

