QL4009 QuickRAM Data Sheet

QUICK LOGIC

• • • • • 9,000 Usable PLD Gate QuickRAM ESP Combining Performance, Density and Embedded RAM

Device Highlights

High Performance & High Density

- 9,000 Usable PLD Gates with 82 I/Os
- 300 MHz 16-bit Counters, 400 MHz Datapaths, 160+ MHz FIFOs
- $0.35 \ \mu m$ four-layer metal non-volatile CMOS process for smallest die sizes

High Speed Embedded SRAM

- 8 dual-port RAM modules, organized in user-configurable 1,152 bit blocks
- 5 ns access times, each port independently accessible
- Fast and efficient for FIFO, RAM, and ROM functions

Easy to Use / Fast Development Cycles

- 100% routable with 100% utilization and complete pin-out stability
- Variable-grain logic cells provide high performance and 100% utilization
- Comprehensive design tools include high quality Verilog/VHDL synthesis

Advanced I/O Capabilities

- Interfaces with both 3.3 V and 5.0 V devices
- PCI compliant with 3.3 V and 5.0 V busses for -1/-2/-3/-4 speed grades
- Full JTAG boundary scan
- I/O Cells with individually controlled Registered Input Path and Output Enables

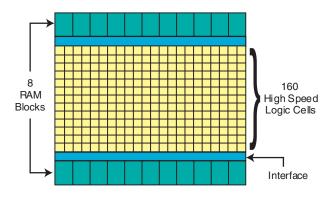


Figure 1: QuickRAM Block Diagram

1

Architecture Overview

The QuickRAMTM family of ESPs (Embedded Standard Products) offers FPGA logic in combination with Dual-Port SRAM modules. The QL4009 is a 9,000 usable PLD gate member of the QuickRAM family of ESPs. QuickRAM ESPs are fabricated on a 0.35µm four-layer metal process using QuickLogic's patented ViaLinkTM technology to provide a unique combination of high performance, high density, low cost, and extreme ease-of-use.

The QL4009 contains 160 logic cells and 8 Dual Port RAM modules (see **Figure 1**). Each RAM module has 1,152 RAM bits, for a total of 9,216 bits. RAM Modules are Dual Port (one read port, one write port) and can be configured into one of four modes: 64 (deep) x18 (wide), 128x9, 256x4, or 512x2 (see **Figure 4**). With a maximum of 82 I/Os, the QL4009 is available in 68-pin PLCC, 84-pin PLCC and 100-pin TQFP packages.

Designers can cascade multiple RAM modules to increase the depth or width allowed in single modules by connecting corresponding address lines together and dividing the words between modules (see **Figure 2**). This approach allows up to 512-deep configurations as large as 16 bits wide in the smallest QuickRAM device and 44 bits wide in the largest device.

Software support for the complete QuickRAM family, including the QL4009, is available through two basic packages. The turnkey QuickWorksTM package provides the most complete ESP software solution from design entry to logic synthesis, to place and route, to simulation. The QuickToolsTM packages provides a solution for designers who use Cadence, Exemplar, Mentor, Synopsys, Synplicity, Viewlogic, Aldec, or other third-party tools for design entry, synthesis, or simulation.

The QuickLogic variable grain logic cell features up to 16 simultaneous inputs and 5 outputs within a cell that can be fragmented into 5 independent cells. Each cell has a fan-in of 29 including register and control lines (see **Figure 3**).

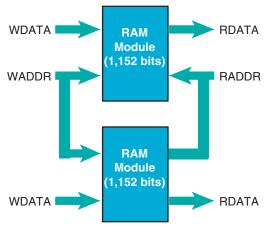


Figure 2: QuickRAM Module Bits

Product Summary

Total of 82 I/O Pins

- 74 bi-directional input/output pins, PCI-compliant for 5.0 V and 3.3 V buses for $^{-1/-2/-3/-4}$ speed grades
- 8 high-drive input/distributed network pins

Eight Low-Skew Distributed Networks

- Two array clock/control networks available to the logic cell flip-flop clock, set and reset inputs each driven by an input-only pin
- Six global clock/control networks available to the logic cell F1, clock, set and reset inputs and the input and I/O register clock, reset and enable inputs as well as the output enable control each driven by an input-only or I/O pin, or any logic cell output or I/O cell feedback

High Performance Silicon

- Input + logic cell + output total delays under 6 ns
- Data path speeds over 400 MHz
- Counter speeds over 300 MHz
- FIFO speeds over 160+ MHz

AC Characteristics at V_{CC} = 3.3 V, T_A = 25 $^{\circ}$ C (K = 1.00)

To calculate delays, multiply the appropriate K factor from **Table 10: Operating Range** by the following numbers in the tables provided.

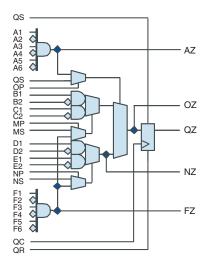


Figure 3: QuickRAM Logic Cell

Symbol	Parameter	Propagation Delays (ns) Fanout (5)					
		1	2	3	4	5	
t _{PD}	Combinatorial Delay ^a	1.4	1.7	1.9	2.2	3.2	
t _{SU}	Setup Time ^a	1.7	1.7	1.7	1.7	1.7	
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	
t _{CLK}	Clock to Q Delay	0.7	1.0	1.2	1.5	2.5	
t _{CWHI}	Clock High Time	1.2	1.2	1.2	1.2	1.2	
t _{CWLO}	Clock Low Time	1.2	1.2	1.2	1.2	1.2	
t _{SET}	Set Delay	1.0	1.3	1.5	1.8	2.8	
t _{RESET}	Reset Delay	0.8	1.1	1.3	1.6	2.6	
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	

Table 1: Logic Cell

a. These limits are derived from a representative selection of the slowest paths through the Quick-RAM logic cell including typical net delays. Worst case delay values for specific paths should be determined from timing analysis of your particular design.

4

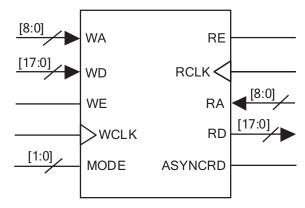


Figure 4: QuickRAM Module

Symbol	Parameter	Propagation Delays (ns) Fanout				
		1	2	3	4	5
t _{SWA}	WA Setup Time to WCLK	1.0	1.0	1.0	1.0	1.0
t _{HWA}	WA Hold Time to WCLK	0.0	0.0	0.0	0.0	0.0
t _{SWD}	WD Setup Time to WCLK	1.0	1.0	1.0	1.0	1.0
t _{HWD}	WD Hold Time to WCLK	0.0	0.0	0.0	0.0	0.0
t _{SWE}	WE Setup Time to WCLK	1.0	1.0	1.0	1.0	1.0
t _{HWE}	WE Hold Time to WCLK	0.0	0.0	0.0	0.0	0.0
t _{WCRD}	WCLK to RD (WA=RA) ^a	5.0	5.3	5.6	5.9	7.1

a. Stated timing for worst case Propagation Delay over process variation at V_{CC} = 3.3 V and $T_A = 25^{\circ}$ C. Multiply by the appropriate Delay Factor, K, for speed grade, voltage and temperature settings as specified in the Operating Range.

			0			
Symbol	Parameter	Propagation Delays (ns) Fanout				
Logic Cells		1	2	3	4	5
t _{SRA}	RA Setup Time to RCLK	1.0	1.0	1.0	1.0	1.0
t _{HRA}	RA Hold Time to RCLK	0.0	0.0	0.0	0.0	0.0
t _{SRE}	RE Setup Time to RCLK	1.0	1.0	1.0	1.0	1.0
t _{HRE}	RE Hold Time to RCLK	0.0	0.0	0.0	0.0	0.0

Table 3: RAM Cell Synchronous Read Timing

a. Stated timing for worst case Propagation Delay over process variation at V_{CC} = 3.3 V and TA = 25° C. Multiply by the appropriate Delay Factor, K, for speed grade, voltage and temperature settings as specified in the Operating Range.

4.0

4.3

4.6

4.9

6.1

RCLK to RD^a

t_{RCRD}

Symbol	Parameter		Propaga	ation Del Fanout	ays (ns)	
		1	2	3	4	5
RPDRD	RA to RD ^a	3.0	3.3	3.6	3.9	5.1

Table 4: RAM Cell Asynchronous Read Timing

a. Stated timing for worst case Propagation Delay over process variation at V_{CC} = 3.3 V and TA = 25° C. Multiply by the appropriate Delay Factor, K, for speed grade, voltage and temperature settings as specified in the Operating Range.

Symbol	Parameter Propagation Dela Fanout			-	(ns)			
		1	2	3	4	8	12	24
t _{IN}	High Drive Input Delay	1.5	1.6	1.8	1.9	2.4	2.9	4.4
t _{INI}	High Drive Input, Inverting Delay	1.6	1.7	.19	2.0	2.5	3.0	4.5
t _{ISU}	Input Register Set-Up Time		3.1	3.1	3.1	3.1	3.1	3.1
t _{IH}	Input Register Hold Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0
t _{ICLK}	Input Register Clock To Q	0.7	0.8	1.0	1.1	1.6	2.1	3.6
t _{IRST}	Input Register Reset Delay	0.6	0.7	0.9	1.0	1.5	2.0	3.5
t _{IESU}	Input Register Clock Enable Setup Time		2.3	2.3	2.3	2.3	2.3	2.3
t _{IEH}	Input Register Clock Enable Hold Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 5: Input-Only / Clock Cells

Table 6: Clock Cells

Symbol	Parameter	Propagation Delays (ns) Fanout ^a						
		1	2	3	4	8	10	11
t _{ACK}	Array Clock Delay	1.2	1.2	1.3	1.3	1.5	1.6	1.7
t _{GCKP}	Global Clock Pin Delay	0.7	0.7	0.7	0.7	0.7	0.7	0.7
t _{GCKB}	Global Clock Buffer Delay	0.8 0.8 0.9 0.9 1.1 1.2				1.3		

a. The array distributed networks consist of 40 half columns and the global distributed networks consist of 44 half columns, each driven by an independent buffer. The number of half columns used does not affect clock buffer delay. The array clock has up to 8 loads per half column. The global clock has up to 11 loads per half column.

Symbol	Parameter	Propagation Delays (ns) Fanout ^a			;)		
		1	2	3	4	8	10
t _{I/O}	Input Delay (bidirectional pad)	1.3	1.6	1.8	2.1	3.1	3.6
t _{ISU}	Input Register Set-Up Time	3.1	3.1	3.1	3.1	3.1	3.1
t _{IH}	Input Register Hold Time	0.0	0.0	0.0	0.0	0.0	0.0
t _{IOCLK}	Input Register Clock to Q	0.7	1.0	1.2	1.5	2.5	3.0
t _{IORST}	Input Register Reset Delay	0.6	0.9	1.1	1.4	2.4	2.9
t _{IESU}	Input Register Clock Enable Set-Up Time		2.3	2.3	2.3	2.3	2.3
t _{IEH}	Input Register Clock Enable Hold Time		0.0	0.0	0.0	0.0	0.0

Table 7: I/O Cell Input Delays

a. Stated timing for worst case Propagation Delay over process variation at V_{CC} = 3.3 V and $T_A = 25^{\circ}$ C. Multiply by the appropriate Delay Factor, K, for speed grade, voltage and temperature settings as specified in the Operating Range.

Table 8: I/O Cell Output Delays

Symbol	Parameter	Propagation Delays (ns) Output Load Capacitance (pF)				
		3	50	75	100	150
t _{OUTLH}	Output Delay Low to High	2.1	2.5	3.1	3.6	4.7
t _{OUTHL}	Output Delay High to Low	2.2	2.6	3.2	3.7	4.8
t _{PZH}	Output Delay Tri-state to High	1.2	1.7	2.2	2.8	3.9
t _{PZL}	Output Delay Tri-state to Low	1.6	2.0	2.6	3.1	4.2
t _{PHZ}	Output Delay High to Tri-state ^a	2.0	-	-	-	-
t _{PLZ}	Output Delay High to Tri-state ^a	1.2	-	-	-	-

a. The following loads are used for $t_{\mbox{\scriptsize PXZ}}$

$$\begin{array}{c} \bullet \\ 1K\Omega \\ = \\ \end{array} \\ = \\ \end{array} \\ \begin{array}{c} \mathsf{tPHZ} \\ \mathsf{5} \mathsf{pF} \\ \bullet \\ \end{array} \\ \begin{array}{c} \mathsf{tPHZ} \\ \mathsf{tPLZ} \\ \mathsf{5} \mathsf{pF} \end{array} \\ \begin{array}{c} \mathsf{tPLZ} \\ \mathsf{5} \mathsf{pF} \end{array} \\ \end{array}$$

© 2002 QuickLogic Corporation

DC Characteristics

The DC specifications are provided in the tables below.

Parameter	Value	Parameter	Value							
V _{CC} Voltage	-0.5 to 4.6 V	DC Input Current	±20 mA							
V _{CCIO} Voltage	-0.5 to 7.0 V	ESD Pad Protection	±2000V							
Input Voltage	-0.5 V to V _{CCIO} +0.5 V	Storage Temperature	-65° C to +150° C							
Latch-up Immunity	±200 mA	Lead Temperature	300° C							

Table 9: Absolute Maximum Ratings

Table 10: Operating Range

Symbol	Parameter		Mili	tary	Industrial		Commercial		Unit
			Min	Мах	Min	Мах	Min	Max	
V _{CC}	Supply Voltage	Supply Voltage		3.6	3.0	3.6	3.0	3.6	V
V _{CCIO}	I/O Input Tolerance Voltage		3.0	5.5	3.0	5.5	3.0	5.25	V
T _A	Ambient Tempe	erature	-55	-	-40	85	0	70	°C
T _C	Case Temperature		-	125	-	-	-	-	°C
		-0 Speed Grade	0.42	2.03	0.43	1.90	0.46	1.85	n/a
		-1 Speed Grade	0.42	1.64	0.43	1.54	0.46	1.50	n/a
К	Delay Factor	-2 Speed Grade	0.42	1.37	0.43	1.28	0.46	1.25	n/a
		-3 Speed Grade			0.43	0.90	0.46	0.88	n/a
		-4 Speed Grade			0.43	0.82	0.46	0.80	n/a

Symbol	Parameter	Conditions	Min	Max	Units
V _{IH}	Input HIGH Voltage		$0.5V_{CC}$	V _{CCIO} +0.5	V
V _{IL}	Input LOW Voltage		-0.5	0.3V _{CC}	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -12 \text{ mA}$	2.4		V
VOH	output i nor i voltage	$I_{OH} = -500 \ \mu A$	0.9V _{CC}		V
V _{OL}	Output LOW Voltage	$I_{OL} = 16 \text{ mA}^{a}$		0.45	V
• OL	Output LOW Voltage	$I_{OL} = 1.5 \text{ mA}$		0.1V _{CC}	V
I	I or I/O Input Leakage Current	$V_{I} = V_{CCIO}$ or GND	-10	10	μΑ
I _{OZ}	3-State Output Leakage Current	$V_{I} = V_{CCIO}$ or GND	-10	10	μA
CI	Input Capacitance ^b			10	pF
T	Output Short Circuit Current ^c	$V_0 = GND$	-15	-180	mA
I _{OS}	Supul Short Circuit Current	$V_{\rm O} = V_{\rm CC}$	40	210	mA
I _{CC}	D.C. Supply Current ^d	V_{I} , V_{IO} = V_{CCIO} or GND	0.50 (typ)	2	mA
I _{CCIO}	D.C. Supply Current on V _{CCIO}		0	100	μA

Table 11: DC Characteristics

a. Applies only to -1/-2/-3/-4 commercial grade devices. These speed grades are also PCI-compliant. All other devices have 8 mA IOL specifications.

b. Capacitance is sample tested only. Clock pins are 12 $\ensuremath{\mathsf{pF}}$ maximum.

c. Only one output at a time. Duration should not exceed 30 seconds.

d. For -1/-2/-3/-4 commercial grade devices only. Maximum ICC is 3 mA for -0 commercial grade and all industrial grade devices. and 5 mA for all military grade devices. For AC conditions, contact QuickLog-ic customer applications group.

Kv and Kt Graphs

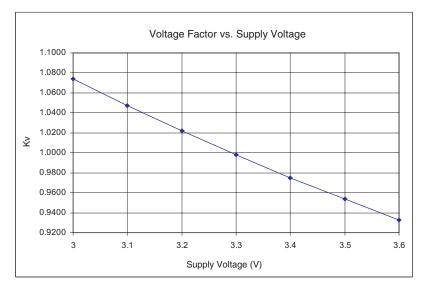


Figure 5: Voltage Factor vs. Supply Voltage

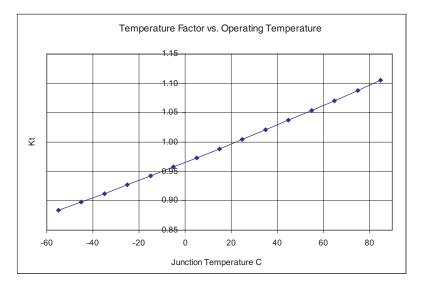
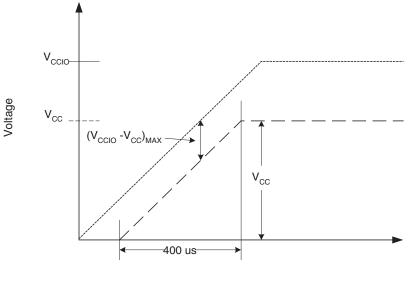



Figure 6: Temperature Factor vs. Operating Temperature

Power-up Sequencing

Figure 7: Power-up Requirements

The following requirements must be met when powering up the device:

(Refer to Figure 7 above)

- When ramping up the power supplies keep (V_{CCIO} -V_{CC})_{MAX} \leq 500 mV. Deviation from this recommendation can cause permanent damage to the device.
- V_{CCIO} must lead V_{CC} when ramping the device.
- The power supply must take greater than or equal to 400 μs to reach V_{CC} . Ramping to V_{CC}/V_{CCIO} earlier than 400 μs can cause the device to behave improperly.

An internal diode is present in-between V_{CC} and V_{CCIO} , as shown in Figure 8.

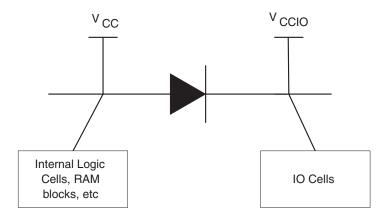


Figure 8: Internal Diode Between V_{CC} and V_{CCIO}

JTAG

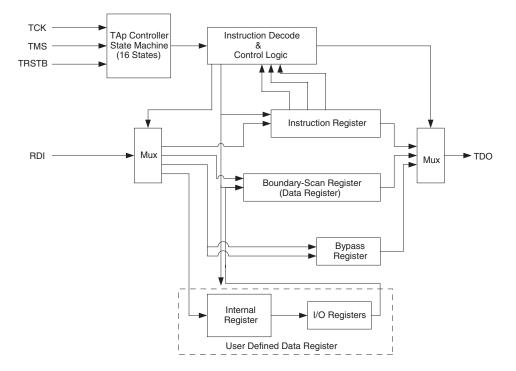


Figure 9: JTAG Block Diagram

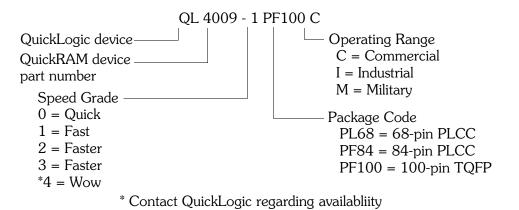
Microprocessors and Application Specific Integrated Circuits (ASICs) pose many design challenges, not the least of which concerns the accessibility of test points. The Joint Test Access Group (JTAG) formed in response to this challenge, resulting in IEEE standard 1149.1, the Standard Test Access Port and Boundary Scan Architecture.

The JTAG boundary scan test methodology allows complete observation and control of the boundary pins of a JTAG-compatible device through JTAG software. A Test Access Port (TAP) controller works in concert with the Instruction Register (IR); these allow users to run three required tests, along with several user-defined tests.

JTAG tests allow users to reduce system debug time, reuse test platforms and tools, and reuse subsystem tests for fuller verification of higher level system elements.

12

The 1149.1 standard requires the following three tests:


- **Extest Instruction.** The Extest instruction performs a PCB interconnect test. This test places a device into an external boundary test mode, selecting the boundary scan register to be connected between the TAP's Test Data In (TDI) and Test Data Out (TDO) pins. Boundary scan cells are preloaded with test patterns (via the Sample/Preload Instruction), and input boundary cells capture the input data for analysis.
- **Sample/Preload Instruction.** This instruction allows a device to remain in its functional mode, while selecting the boundary scan register to be connected between the TDI and TDO pins. For this test, the boundary scan register can be accessed via a data scan operation, allowing users to sample the functional data entering and leaving the device.
- **Bypass Instruction.** The Bypass instruction allows data to skip a device's boundary scan entirely, so the data passes through the bypass register. The Bypass instruction allows users to test a device without passing through other devices. The bypass register is connected between the TDI and TDO pins, allowing serial data to be transferred through a device without affecting the operation of the device.

Pin Descriptions

Pin	Function	Description				
TDI/RSI	Test Data In for JTAG /RAM init. Serial Data In	Hold HIGH during normal operation. Connects to serial PROM data in for RAM initialization. Connect to $V_{\rm CC}$ if unused.				
TRSTB/RRO	Active low Reset for JTAG /RAM init. reset out	Hold LOW during normal operation. Connects to serial PROM reset for RAM initialization. Connect to GND if unused.				
TMS	Test Mode Select for JTAG	Hold HIGH during normal operation. Connect to V_{CC} if not used for JTAG.				
TCK	Test Clock for JTAG	Hold HIGH or LOW during normal operation. Connect to $\rm V_{\rm CC}$ or ground if not used for JTAG.				
TDO/RCO	Test data out for JTAG /RAM init. clock out	Connect to serial PROM clock for RAM initialization. Must be left unconnected if not used for JTAG or RAM initialization.				
STM	Special Test Mode	Must be grounded during normal operation.				
I/ACLK	High-drive input and/or array network driver	Can be configured as either or both.				
I/GCLK	High-drive input and/or global network driver	Can be configured as either or both.				
Ι	High-drive input	Use for input signals with high fanout.				
I/O	Input/Output pin	Can be configured as an input and/or output.				
V _{cc}	Power supply pin	Connect to 3.3 V supply.				
V _{CCIO}	Input voltage tolerance pin	Connect to 5.0 V supply if 5 V input tolerance is required, otherwise connect to 3.3 V supply.				
GND	Ground pin	Connect to ground.				
GND/THERM Ground/Thermal pin		Available on 456-PBGA only. Connect to ground plane on PCB if heat sinking desired. Otherwise may be left unconnected.				

Table 12: Pin Descriptions

Ordering Information

68 PLCC Pinout Diagram

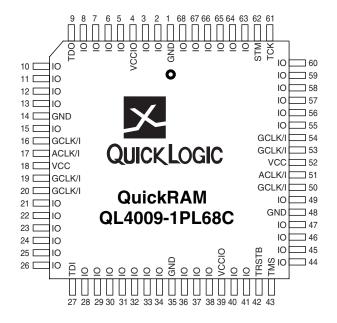


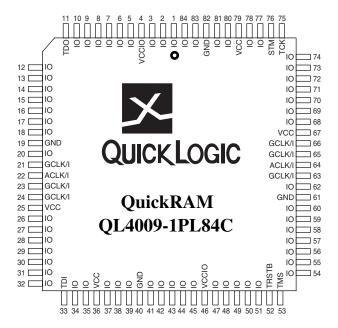
Figure 10: Top View of 68 Pin PLCC

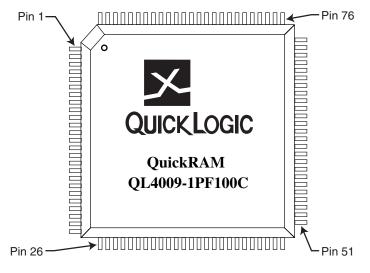
68 PLCC Pinout Table

Table 13: 68 PLCC Pinout Table

68 PLCC	Function						
1	GND	18	VCC	35	GND	52	VCC
2	I/O	19	GCLK/I	36	I/O	53	GCLK/I
3	I/O	20	GCLK/I	37	I/O	54	GCLK/I
4	VCCIO	21	I/O	38	I/O	55	I/O
5	I/O	22	I/O	39	VCCIO	56	I/O
6	I/O	23	I/O	40	I/O	57	I/O
7	I/O	24	I/O	41	I/O	58	I/O
8	I/O	25	I/O	42	TRSTB	58	I/O
9	TDO	26	I/O	43	TMS	60	I/O
10	I/O	27	TDI	44	I/O	61	ТСК
11	I/O	28	I/O	45	I/O	62	STM
12	I/O	29	I/O	46	I/O	63	I/O
13	I/O	30	I/O	47	I/O	64	I/O
14	GND	31	I/O	48	GND	65	I/O
15	I/O	32	I/O	49	I/O	66	I/O
16	GCLK/I	33	I/O	50	GCLK/I	67	I/O
17	ACLK/I	34	I/O	51	ACLK/I	68	I/O

84 PLCC Pinout Diagram




Figure 11: Top View of 84 Pin PLCC

84 PLCC Pinout Table

84 PLCC	Function						
1	I/O	22	ACLK/I	43	I/O	64	ACLK/I
2	I/O	23	GCLK/I	44	I/O	65	GCLK/I
3	I/O	24	GCLK/I	45	I/O	66	GCLK/I
4	VCCIO	25	VCC	46	VCCIO	67	V _{CC}
5	I/O	26	I/O	47	I/O	68	I/O
6	I/O	27	I/O	48	I/O	69	I/O
7	I/O	28	I/O	49	I/O	70	I/O
8	I/O	29	I/O	50	I/O	71	I/O
9	I/O	30	I/O	51	I/O	72	I/O
10	I/O	31	I/O	52	TRSTB	73	I/O
11	TDO	32	I/O	53	TMS	74	I/O
12	I/O	33	TDI	54	I/O	75	ТСК
13	I/O	34	I/O	55	I/O	76	STM
14	I/O	35	I/O	56	I/O	77	I/O
15	I/O	36	Vcc	57	I/O	78	I/O
16	I/O	37	I/O	58	I/O	79	VCC
17	I/O	38	I/O	59	I/O	80	I/O
18	I/O	39	I/O	60	I/O	81	I/O
19	GND	40	GND	61	GND	82	GND
20	I/O	41	I/O	62	I/O	83	I/O
21	GCLK/I	42	I/O	63	GCLK/I	84	I/O

Table 14: 84 PLCC Pinout Table

100 TQFP Pinout Diagram

Figure 12: Top View of 100 Pin TQFP

100 TQFP Pinout Table

Table 15: 100 TQFP Pinout Table

100TQFP	Function	100TQFP	Function	100TQFP	Function	100TQFP	Function
1	I/O	26	TDI	51	I/O	76	ТСК
2	I/O	27	I/O	52	I/O	77	STM
3	I/O	28	I/O	53	I/O	78	I/O
4	I/O	29	I/O	54	I/O	79	I/O
5	I/O	30	I/O	55	I/O	80	I/O
6	I/O	31	I/O	56	I/O	81	I/O
7	I/O	32	I/O	57	I/O	82	I/O
8	I/O	33	I/O	58	I/O	83	I/O
9	GND	34	I/O	59	GND	84	I/O
10	I/O	35	GND	60	I/O	85	GND
11	I	36	I/O	61	I	86	I/O
12	ACLK / I	37	I/O	62	ACLK / I	87	I/O
13	VCC	38	GND	63	Vcc	88	GND
14	I	39	I/O	64	I	89	I/O
15	GCLK / I	40	I/O	65	GCLK / I	90	I/O
16	VCC	41	I/O	66	Vcc	91	I/O
17	I/O	42	VCCIO	67	I/O	92	VCCIO
18	I/O	43	I/O	68	I/O	93	I/O
19	I/O	44	I/O	69	I/O	94	I/O
20	I/O	45	I/O	70	I/O	95	I/O
21	I/O	46	I/O	71	I/O	96	I/O
22	I/O	47	I/O	72	I/O	97	I/O
23	I/O	48	I/O	73	I/O	98	I/O
24	I/O	49	TRSTB	74	I/O	99	I/O
25	I/O	50	TMS	75	I/O	100	TDO

Contact Information

Telephone:	408 990 4000 (US)
	416 497 8884 (Canada)
	44 1932 57 9011 (Europe)
	49 89 930 86 170 (Germany)
	852 8106 9091 (Asia)
	81 45 470 5525 (Japan)
E-mail:	info@quicklogic.com
Support:	support@quicklogic.com
Web site:	http://www.quicklogic.com/

Revision History

Table 16: Revision History

Revision	Date	Comments
А	5/2000	First release.
В	5/2002	Added Kfactor, Power-up, JTAG and mechanical drawing information. Reformatted.

Copyright Information

Copyright © 2002 QuickLogic Corporation. All Rights Reserved.

The information contained in this product brief, and the accompanying software programs are protected by copyright. All rights are reserved by QuickLogic Corporation. QuickLogic Corporation reserves the right to make periodic modifications of this product without obligation to notify any person or entity of such revision. Copying, duplicating, selling, or otherwise distributing any part of this product without the prior written consent of an authorized representative of QuickLogic is prohibited.

QuickLogic, pASIC, and ViaLink are registered trademarks, and SpDE and QuickWorks are trademarks of QuickLogic Corporation.

Verilog is a registered trademark of Cadence Design Systems, Inc.