PRODUCT INFORMATION

Description

The Raytheon RMLA3565-58 is a single bias wideband low noise MMIC amplifier that meets the following specifications over the 3.5 - 6.5 GHz frequency range. The MMIC requires no external matching circuits no external gate bias supply. This device uses Raytheon's advanced $0.25~\mu m$ PHEMT process to provide low noise, high linearity and low current.

Features

- ◆ 19.0 dB Gain Typical
- ◆ 1.5 dB Noise Figure, Typical 5.0 6.5 GHz
- Single Positive Bias
- Small Outline Metal Base Quad Plastic Package
- Internal 50Ω Matching

Absolute Maximum Ratings¹

Parameter	Symbol	Value	Unit
Positive Drain DC Voltage (No RF)	Vdd	6.5	V
RF Input Power (from 50Ω source)	Pin(CW)	0	dBm
Drain Current	ldd	130	mA
Case Operating Temperature	Tc	-35 to 85	°C
Storage Temperature Range	Tstg	-40 to 110	°C
Soldering Temperature	Tsolder	220	°C

Electrical Characteristics²

Parameter	Min	Тур	Max	Unit
Frequency Range	3.5		6.5	GHz
Gain (Small Signal)3,4	17.0	19.0		dB
Gain Variation vs Temp		-0.008		dB/°C
Noise Figure ⁴ 3.5 - 5 GHz 5 - 6.5 GHz	0.0	1.4 1.5	2.2 1.6	dB dB
Power Out, P1dB @ 5.5 GHz	8.0	10.0		dBm

Parameter	Min	Тур	Max	Unit
OIP3 @ 5.5 GHz, +3 dBm Pout total	17	21.0		dBm
Idd		70.0	85.0	mA
Vdd	3.0	4.0	6.0	V
Input Return Loss		-15.0		dB
Output Return Loss		-10.0		dB
Thermal Resistance Rjc (Channel to Case)		135		°C/W

Notes

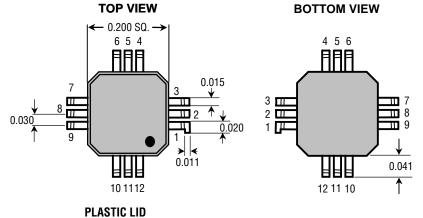
- 1. No permanent damage with only one parameter set at maximum limit and all other parameters at typical conditions
- 2. All parameters met at Tc = +25 °C, Vdd = 4.0V
- 3. Pin = -20 dBm, Vdd = 4.0 V, Frequency 3.5 6.5 GHz
- 4. Data de-embedded from fixture loss

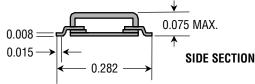
PRODUCT INFORMATION

Application Information

CAUTION: THIS IS AN ESD SENSITIVE DEVICE

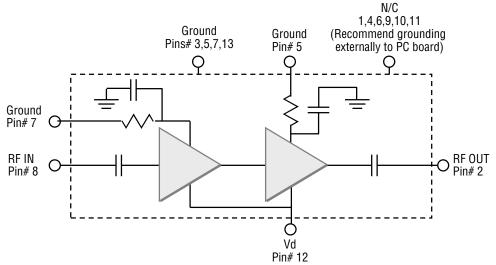
The following briefly describes a procedure for evaluating the high efficiency PHEMT amplifier packaged in a surface mount package. It may be noted that the chip is a fully monolithic single ended two stage amplifier for 3.5 to 6.5 GHz applications.


Test Fixture


Figure 1 shows the outline and pin-out descriptions for the packaged device. Figure 2 shows the functional block diagram of the packaged product. A typical test fixture schematic showing external bias components is shown in figure 3. Figure 4 shows typical layout of an evaluation board corresponding to the schematic diagram. A typical performance obtained from the test fixture is shown in figure 5. The following should be noted:

- (1) Package pin designations are as shown in figure 1.
- (2) Vd is the Drain Voltage (positive) applied at the pins of the package
- (3) Vdd is the positive supply voltage at the evaluation board terminal

Figure 1
Package Outline and
Pin Designations


Dimensions in inches

Pin#	Description	
1	N/C	
2	RF Out	
3	GND	
4	N/C	
5	GND	
6	N/C	
7	GND	
8	RF In	
9	N/C	
10	N/C	
11	N/C	
12	Vd	
13	GND	
	(Package Base)	

Figure 2
Functional Block
Diagram

PRODUCT INFORMATION

Figure 3 Schematic for a Typical Test Evaluation Board (RMLA3565-58-TB)

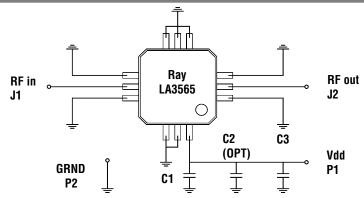
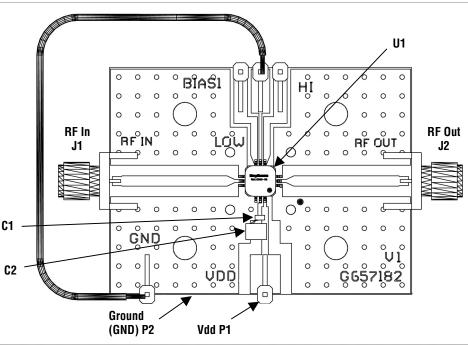



Figure 4 Layout and Assembly of Test Evaluation Board (RMLA3565-58-TB)

Test Procedure

The following sequence of procedure must be followed to properly test the power amplifier:

for the evaluation board (RMLA3565-58-TB)

Step 1: Turn off RF input power.

Step 2: Use GND terminal of the evaluation board for

DC supplies.

Step 3: Apply drain supply voltages of +4.0 V to

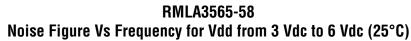
evaluation board terminal Vdd.

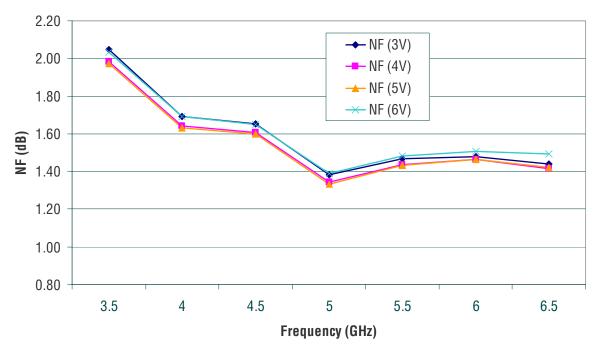
Step 4: After the bias condition is established, RF input signal may now be applied.

Step 5: Follow turn-off sequence of:

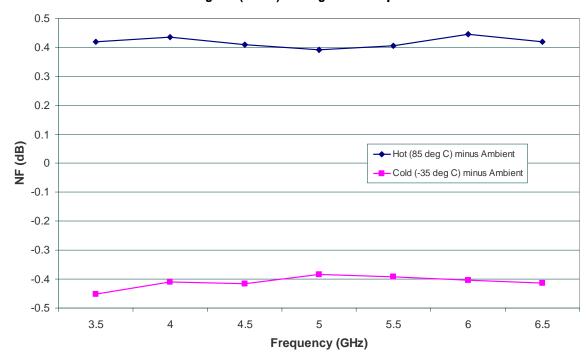
(i) Turn off RF Input Power

(ii) Turn down and off Vdd

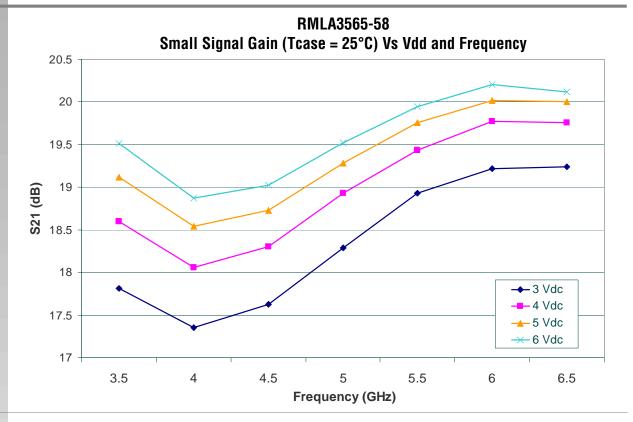

Parts List


for Test Evaluation Board (RMLA3565-58-TB)

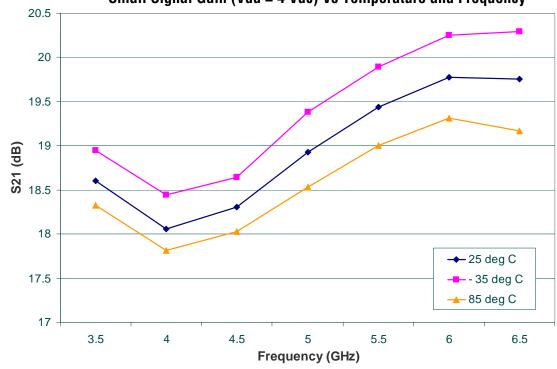
Part	Value	EIA Size	Vendor(s)
C1	330 pF	.04" x .02"	AVX, Murata, Novacap,
C2	4.75 uF	.14"x .11"	Sprague, ATC, AVX, Murata,
U1	RMLA3565-58	.28" x .28" x .07	Raytheon
P1, P2	Terminal		Samtec
J1, J2	SMA Connectors		E.F. Johnson
Board	R04003(Rogers)	1.99x1.50x.032	Raytheon


PRODUCT INFORMATION

Performance Data

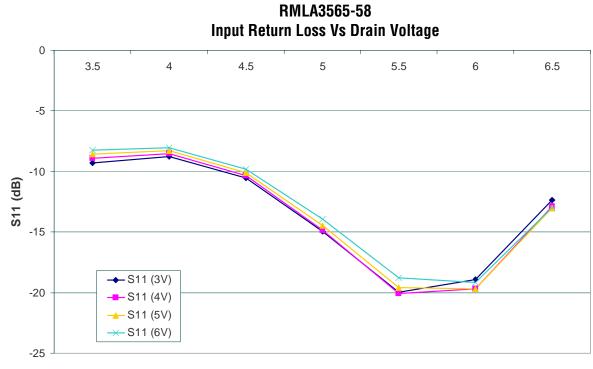


RMLA3565-58
Noise Figure (4Vdc) Change Vs Temperature

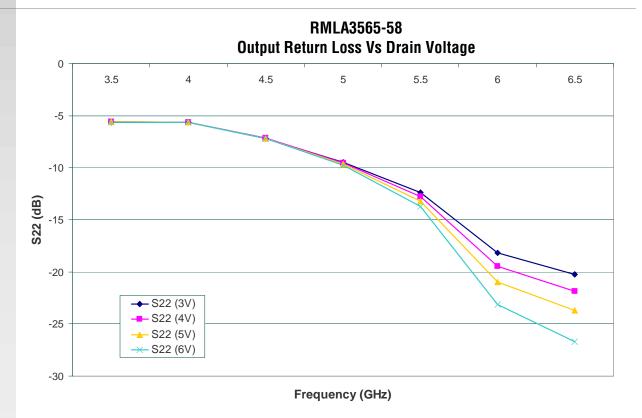


PRODUCT INFORMATION

Performance Data

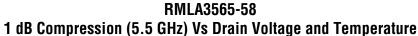


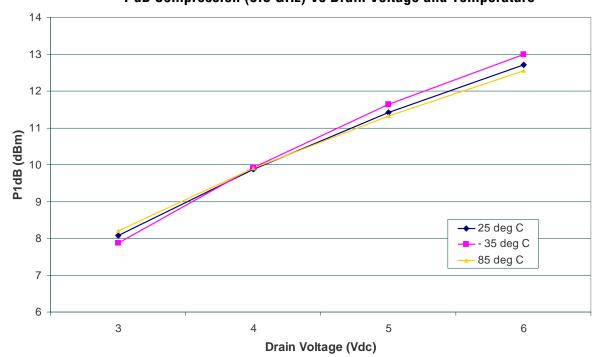
RMLA3565-58
Small Signal Gain (Vdd = 4 Vdc) Vs Temperature and Frequency

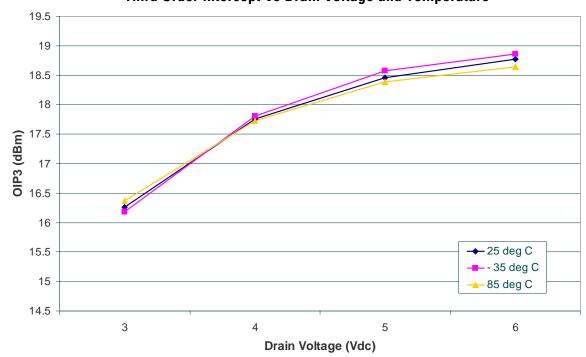


PRODUCT INFORMATION

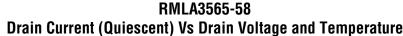
Performance Data

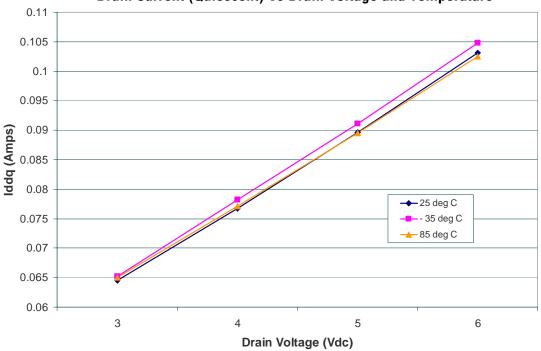





PRODUCT INFORMATION

Performance Data




RMLA3565-58
Third Order Intercept Vs Drain Voltage and Temperature

PRODUCT INFORMATION

Performance Data

