

RF2132

Typical Applications

- 4.8V AMPS Cellular Handsets
- 4.8V CDMA/AMPS Handsets
- 4.8V JCDMA/TACS Handsets

Product Description

The RF2132 is a high power, high efficiency linear amplifier IC. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as the final RF amplifier in dual-mode 4-cell CDMA/AMPS handheld digital cellular equipment, spread-spectrum systems, and other applications in the 800MHz to 950MHz band. The device is self-contained with 50 Ω input and the output can be easily matched to obtain optimum power, efficiency, and linearity characteristics over varying supply and control voltages.

Driver Amplifier in Cellular Base Stations

Functional Block Diagram

Package Style: Standard Batwing

Features

- Single 4.2V to 5.0V Supply
- Up to 29 dBm Linear Output Power
- 29dB Gain With Analog Gain Control
- 45% Linear Efficiency
- On-board Power Down Mode
- 800MHz to 950MHz Operation

Ordering Information					
RF2132 RF2132 PCBA	Linear Power Amplifier Fully Assembled Evaluation	on Board			
RF Micro Devices, 7628 Thorndike Ro Greensboro, NC 2	Inc. oad 7409, USA	Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com			

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (No RF)	-0.5 to +8.0	V _{DC}
Supply Voltage (P _{OUT} <32dBm)	-0.5 to +5.0	V _{DC}
Power Control Voltage (V _{PC})	-0.5 to +5.0 or V _{CC}	V
DC Supply Current	800	mA
Input RF Power	+12	dBm
Output Load VSWR	10:1	
Storage Temperature	-40 to +150	°C
Junction Temperature	200	°C

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition	
i ulumotol	Min.	Тур.	Max.	0	Condition	
Overall					$T=25 \circ C, V_{CC}=4.8 V, V_{PC}=4.0 V,$	
Hackle Francisco Dancia	000	004 1- 040	050	N411-	Freq=824 MHz to 849 MHz	
Usable Frequency Range	800	824 to 849	950	MHZ		
Linear Gain	27	29	31	dB		
Iotal Linear Efficiency	40	45		%		
Efficiency at Max Output	50	55		% ما		
OFF Isolation	23	27		dВ	V _{PC} =0V,P _{IN} =+6dBm	
Second Harmonic		-30		dBc	Including Second Harmonic Trap	
Maximum Linear Output Power		28.5	29		IS-95A CDMA Modulation	
Adjacent Channel Power Rejec-		-46	-44	dBc	Pout = 28 dBm	
					ciency.	
Adjacent Channel Power Rejec-		-58	-56	dBc	Pout = 28 dBm	
tion @ 1.98 MHz						
Maximum CW Output Power	31.5	32		dBm		
Operating Case Temperature	-30		110	°C	Pout = 31 dBm, Efficiency = 55%	
Ambient Operating Temperature	-30		100	°C		
Junction to Case Thermal Resis-		85		°C/W		
lance		-2.1				
Output Load VSWR		52.1	10.1		No oscillations	
Power Down			10.1			
Turn On/Off Time			100	ns		
Total Current			10	μA	"OFF" State	
V _{PC} "OFF" Voltage	0.2		0.5	V		
V _{PC} "ON" Voltage	3.6	4.0	Vcc	V		
Power Supply						
Power Supply Voltage	4.2	4.8	5.0	V	Operating voltage	
Idle Current		40	100	mA	V _{PC} =4.0V	
Current into VPC pin		15	20	mA	"ON" State	

RF2132

Pin	Function	Description	Interface Schematic		
1	VCC1	Power supply for the driver stage, and interstage matching. Shunt inductance is required on this pin, which can be achieved by an inductor to V_{CC} , with a decoupling capacitor on the V_{CC} side. The value of the inductor is frequency dependent; 3.3nH is required for 830MHz, and 1.2nH for 950MHz. Instead of an inductor, a high impedance microstrip line can be used.	RF IN OFFICE Stages		
2	NC	Not Connected.			
3	RF IN	RF input. This is a 50Ω input, but the actual input impedance depends on the interstage matching network connected to pin 1. An external DC blocking capacitor is required if this port is connected to a DC path to ground or a DC voltage.	See pin 1.		
4	GND	Ground connection. Keep traces physically short and connect immediately to the ground plane for best performance.			
5	GND	Same as pin 4.			
6	GND	Ground for stage 1. Keep traces physically short and connect immedi- ately to ground plane for best performance. This ground should be iso- lated from the batwing and other ground contacts. See evaluation board layout.			
7	GND	Same as pin 6.			
8	PC	Power Control. When this pin is "low", all circuits are shut off. A "low" is typically 0.5V or less at room temperature. During normal operation this pin is the power control. Control range varies from about 2V for 0dBm to V_{CC} for +31dBm RF output power. The maximum power that can be achieved depends on the actual output matching. PC should never exceed 5.0V or V_{CC} , whichever is the lowest.	PC O		
9	GND	Same as pin 4.			
10	RF OUT	RF Output and power supply for the output stage. The four output pins are combined, and bias voltage for the final stage is provided through these pins. The external path must be kept symmetric until combined to ensure stability. An external matching network is required to provide the optimum load impedance; see the application schematics for details.	RF OUT		
11	RF OUT	Same as pin 10.	See pin 10.		
12	GND	Same as pin 4.			
13	GND	Same as pin 4.			
14	RF OUT	Same as pin 10.	See pin 10.		
15	RF OUT	Same as pin 10.	See pin 10.		
16	GND	Same as pin 4.			

Application Schematic

Power supply filtering/bypassing for V $_{\rm PC}$

RF2132

RF2132 Evaluation Board Vcc = 4.8 V, Vpc = 4.0 V, Frequency = 836 MHz, IS-95A CDMA