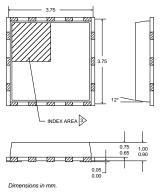
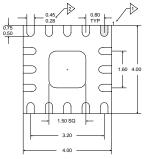


Preliminary

RF2196


3V PCS LINEAR POWER AMPLIFIER


Typical Applications

- 3V CDMA PCS Handsets
- 3V CDMA KPCS Handsets
- 3V TDMA/GAIT PCS Handsets
- 3 V CDMA 2000 PCS Handsets
- Spread-Spectrum Systems
- Portable Battery-Powered Equipment

Product Description

The RF2196 is a high-power, high-efficiency linear amplifier IC targeting 3V handheld systems. The device is manufactured on an advanced Gallium Arsenide process, and has been designed for use as the final RF amplifier in 3V CDMA and CDMA2000 handsets as well as other applications in the 1750MHz to 1910MHz band. The RF2196 has a low power mode to extend battery life under low output power conditions. The package is an ultra small 4mmx4mm leadless plastic package with backside ground.

NOTES:

Package Style: LCC, 16-Pin, 4x4

1> Shaded Pin is Lead 1

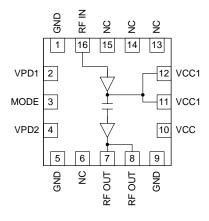
Dimension applies to plated terminal and is n 0.10 mm and 0.25 mm from terminal tip.

The terminal #1 identifier and terminal numbering convention shall conform to JESD 95-1 SPP-012. Details of terminal #1

4 Pins 1 and 9 are fused. 5 Package Warpage: 0.05 max

Optimum Technology Matching® Applied

☐ Si BJT


▼ GaAs HBT

GaAs MESFET

Si Bi-CMOS

☐ SiGe HBT

☐ Si CMOS

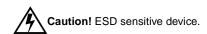
Functional Block Diagram

Features

- Single 3V Supply
- 29dBm Linear Output Power
- 35% Linear Efficiency
- Low Power Mode (Up to 20dBm)
- 55mA Idle Current

Ordering Information

RF2196 3V PCS LINEAR Power Amplifier RF2196 PCBA Fully Assembled Evaluation Board


RF Micro Devices, Inc. 7625 Thorndike Road Greensboro, NC 27409, USA

Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com

Rev A0 010518 2-203

Absolute Maximum Ratings

Parameter	Rating	Unit			
Supply Voltage (RF off)	+8.0	V_{DC}			
Supply Voltage (P _{OUT} ≤31dBm)	+5.2	V_{DC}			
Mode Voltage (V _{MODE})	+4.2	V_{DC}			
Control Voltage (V _{REG})	+3.0	V_{DC}			
Input RF Power	+10	dBm			
Operating Case Temperature	-30 to +110	°C			
Storage Temperature	-30 to +150	°C			
Moisture Sensitivity	Modified JEDEC Level 2				

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

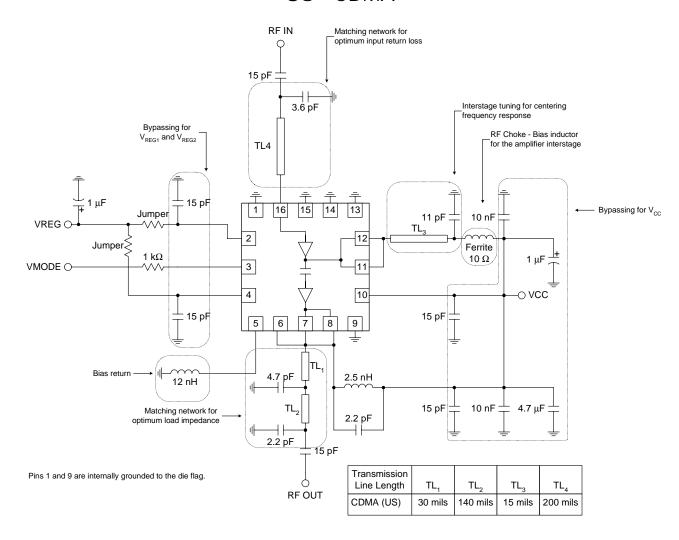
Parameter	;	Specification	n	Unit	Condition	
	Min.	Тур.	Max.			
High Power State					Case T=25°C, V _{CC} =3.4V, V _{REG} =2.85V,	
(V _{MODE} Low)					V _{MODE} =0V to 0.5V, Freq=1850MHz to	
Frequency Range	1850		1910	MHz	1910MHz (unless otherwise specified)	
Linear Gain	25	27	1910	dB		
Second Harmonic	20	-50		dBc		
Third Harmonic		-63		dBc		
Maximum Linear Output Power (CDMA Modulation)	29			dBm		
Total Linear Efficiency		35		%	P _{OUT} =29dBm	
Adjacent Channel Power Rejection		-46	-44	dBc	ACPR @ 1.25MHz	
		-62	-56	dBc	ACPR @ 2.25MHz	
Input VSWR		<2:1				
Output VSWR			10:1		No damage.	
			6:1		No oscillations. >-70dBc	
Noise Power		-141		dBm/Hz	At 80MHz offset.	
Low Power State					Case T=25°C, V _{CC} =3.4V, V _{REG} =2.85V,	
(V _{MODE} High)					V _{MODE} =2V to 3V, Freq=1850MHz to	
	4050		1010		1910MHz (unless otherwise specified)	
Frequency Range Linear Gain	1850 16	20	1910	MHz dB		
Linear Gain Second Harmonic	16	-45		dBc		
Third Harmonic		-45 -60		dBc		
Maximum Linear Output Power	16	20		dBm		
(CDMA Modulation)	10	20		ubiii		
Max I _{CC}		160		mA	P _{OUT} =+16dBm (all currents included)	
Adjacent Channel Power Rejection		<-50	-46	dBc	ACPR @ 1.25MHz	
		<-60	-58	dBc	ACPR @ 2.25MHz	
Input VSWR		2:1				
Output VSWR			10:1		No damage.	
			6:1		No oscillations. >-70dBc	

2-204 Rev A0 010518

RF2196

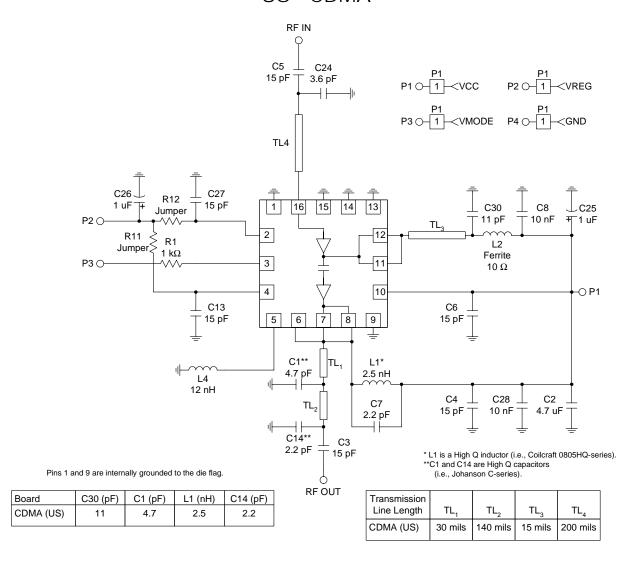
Preliminary

Danamatan	Specification			11	O a malitis m	
Parameter	Min.	Typ. Max. Unit		Unit	Condition	
High Power State CDMA 2000 1x (V _{MODE} LOW)					Case T=25°C, V _{CC} =3.4V, V _{REG} =2.85V, V _{MODE} =0V to 0.5V, Freq=1850MHz to 1910MHz (unless otherwise specified)	
Frequency Range Linear Gain Pilot+DCCH 9600	1850	27	1910	MHz dB	(, , , , , , , , , , , , , , , , , , ,	
Maximum Linear Output Power (CDMA 2000 Modulation)	26.5			dBm	2.5dB Backoff included in IS95D 5.4dB peak to average at CCDF of 1%	
Adjacent Channel Power Rejection		-49		dBc	ACPR @ 1.25MHz	
Dilata FOLL 0000 - OOLIO 0000		-61		dBc	ACPR @ 2.25MHz	
Pilot+FCH 9600+SCH0 9600 Maximum Linear Output Power (CDMA 2000 Modulation)	29			dBm	4.5dB peak to average at CCDF of 1%	
Adjacent Channel Power Rejection		-46		dBc	ACPR @ 1.25MHz	
		-63		dBc	ACPR @ 2.25MHz	
Low Power State CDMA 2000 1x (V _{MODE} HIGH)					Case T=25°C, V _{CC} =3.4V, V _{REG} =2.85V, V _{MODE} =2V to 3V, Freq=1850MHz to 1910MHz	
Frequency Range Linear Gain	1850	19	1910	MHz dB		
Pilot+DCCH 9600 Maximum Linear Output Power (CDMA 2000 Modulation)	16	20		dBm	5.4dB peak to average at CCDF of 1%	
Adjacent Channel Power Rejection		-52		dBc	ACPR @ 1.25MHz	
		-65		dBc	ACPR @ 2.25MHz	
Pilot+FCH 9600+SCHO 9600 Maximum Linear Output Power (CDMA 2000 Modulation)	16	20		dBm	4.5dB peak to average at CCDF of 1%	
Adjacent Channel Power Rejection		-52		dBc	ACPR @ 1.25MHz	
		-65		dBc	ACPR @ 2.25MHz	
DC Supply						
Supply Voltage	3.0	3.4	4.2	V	l v	
Quiescent Current		185		mA	V _{MODE} =Low	
V Current		55 5	10	mA mA	V _{MODE} =High	
V _{REG} Current V _{MODE} Current		5	1	mA mA		
Total Current (Power Down)			10	μA	V _{REG} =Low	
V _{REG} "Low" Voltage	0		0.5	V	*REG-LOW	
V _{REG} Low Voltage	2.75	2.85	2.95	V		
V _{MODE} "Low" Voltage	0	2.00	0.5	V		
V _{MODE} "High" Voltage	2.0		3.0	V		


Rev A0 010518 2-205

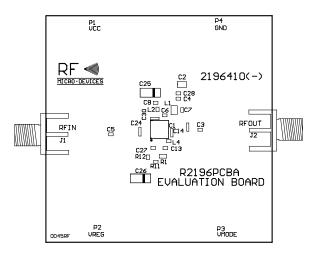
Pin	Function	Description	Interface Schematic
1	GND	This pin is internally grounded to the die flag.	
2	VREG1	Power Down control for first stage. Regulated voltage supply for amplifier bias. In Power Down mode, both V_{REG} and V_{MODE} need to be LOW (<0.5 V).	
3	MODE	For nominal operation (High Gain Mode), V _{MODE} is set LOW. When set HIGH, the driver and final are dynamically scaled to reduce the device size and as a result to reduce idle current.	
4	VREG2	Power Down control for the second stage. Regulated voltage supply for amplifier bias. In Power Down mode, both V_{REG} and V_{MODE} need to be LOW (<0.5V).	
5	GND	Connect to ground plane via 15nH inductor. DC return for the second stage bias circuit.	
6	NC	This pin has no internal bonding; therefore, this pin can be connected to output pin 7, connected to the ground plane, or not connected. Slight tuning of the output match may be required due to stray capacitance of the pin.	
7	RF OUT	RF output and power supply for final stage. This is the unmatched collector output of the second stage. A DC block is required following the matching components. The biasing may be provided via a parallel L-C set for resonance at the operating frequency of 1710MHz to 1910MHz. It is important to select an inductor with very low DC resistance with a 1 A current rating. Alternatively, shunt microstrip techniques are also applicable and provide very low DC resistance. Low frequency bypassing is required for stability.	RF OUT From Bias Network
8	RF OUT	Same as pin 7.	See pin 7.
9	GND	This pin is internally grounded to the die flag.	
10	VCC	Supply for bias reference and control circuits. High frequency bypassing may be necessary.	
11	VCC1	Power supply for first stage and interstage match. Pins 11 and 12 should be connected by a common trace where the pins contact the printed circuit board.	
12	VCC1	Same as pin 11.	
13	NC	It is recommended that these pins be connected to the ground plane for improved isolation between RF IN (pin 16) and the VCC1 pins (pins 11 and 12).	
14	NC	It is recommended that these pins be connected to the ground plane for improved isolation between RF IN (pin 16) and the VCC1 pins (pins 11 and 12).	
15	NC	It is recommended that these pins be connected to the ground plane for improved isolation between RF IN (pin 16) and the VCC1 pins (pins 11 and 12).	
16	RF IN	RF input. An external 15pF series capacitor is required as a DC block. In addition, the matching circuit shown is required to improve input VSWR.	RF IN O 3.6 pF Bias Stages
Pkg Base	GND	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias. The pad should have a short thermal path to the ground plane.	

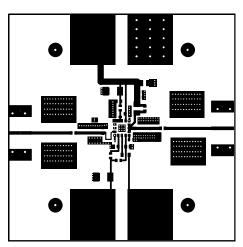
2-206 Rev A0 010518

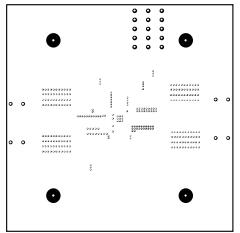

RF2196

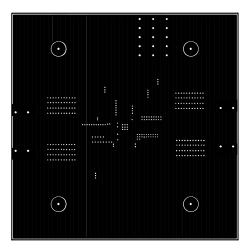
Application Schematic US - CDMA

Rev A0 010518 2-207


Evaluation Board Schematic US - CDMA




2-208 Rev A0 010518


Evaluation Board Layout Board Size 2.0" x 2.0"

Board Thickness 0.028"; Board Material FR-4; Multi-Layer; Ground Plane at 0.014"

Rev A0 010518 2-209

5

OWER AMPLIFIERS

2-210 Rev A0 010518