Typical Applications

- CATV Distribution Amplifiers

- Cable Modems
- Broadband Gain Blocks

- Laser Diode Driver

- Return Channel Amplifier
- Base Stations

Product Description

The RF2360 is a general purpose, low-cost, high-linearity RF amplifier IC. The device is manufactured on a Gallium Arsenide process and is featured in an SOP-16 batwing package. It has been designed for use as an easily cascadable 75Ω gain block with a Noise Figure of less than 2 dB . Gain flatness better than 0.5 dB from 5 MHz to 1000 MHz , and high linearity make this part ideal for cable TV applications. Other applications include IF and RF amplification in wireless voice and data communication products operating in frequency bands up to 1000 MHz . The device is self-contained with 75Ω input and output impedances providing less than 2:1 VSWR matching. For higher input and output return losses, see the evaluation schematic.

Optimum Technology Matching ${ }^{\circledR}$ AppliedSi BJTGaAs HBTGaAs MESFETSi Bi-CMOSSiGe HBTSi CMOS

Functional Block Diagram

Package Style: Standard Batwing

Features

- 5 MHz to 1500 MHz Operation
- Internally Matched Input and Output
- 20dB Small Signal Gain
- 1.2 dB Noise Figure
- +24dBm Output Power
- Single 6V to 9V Positive Power Supply

Ordering	
Information	
RF2360	Linear General Purpose Amplifier
RF2360 PCBA	Fully Assembled Evaluation Board 50Ω
RF2360 411	Fully Assembled Evaluation Board 75H
RF2360 412	Fully Assembled Evaluation Board 75L
RF Micro Devices, Inc. Tel (336) 6641233 7625 Thorndike Road Fax (336) 664 0454 Greensboro, NC 27409, USA http://www.rfmd.com	

Absolute Maximum Ratings

Parameter	Rating	Unit
Device Current	175	mA
Device Voltage	9	V
Input RF Power	+13	dBm
Output Load VSWR	$20: 1$	
Ambient Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall (50 Ω) Frequency Range Input VSWR Output VSWR Gain Gain Flatness Noise Figure Noise Figure Output IP_{3} Output IP_{3} Output IP_{3} Output IP_{2} Output IP_{2} Output $\mathrm{P}_{1 \mathrm{~dB}}$ Output $\mathrm{P}_{1 \mathrm{~dB}}$ Output $\mathrm{P}_{1 \mathrm{~dB}}$ Reverse Isolation Gain Gain Flatness Noise Figure Noise Figure Output IP_{3} Output IP_{3} Output IP_{3} Output IP_{2} Output IP_{2} Output $P_{1 d B}$ Output $P_{1 d B}$ Output $P_{1 \mathrm{~dB}}$	5	$\begin{gathered} 1.6: 1 \\ \\ \text { 1.2:1 } \\ 20 \\ +/-0.9 \\ 1.2 \\ 1.5 \\ 33.7 \\ 37.2 \\ 36.4 \\ 46.3 \\ 44.4 \\ 21 \\ 24 \\ 23.7 \\ 24 \\ \\ 20 \\ \hline+/-0.9 \\ 1.1 \\ 1.5 \\ 34.8 \\ 38.1 \\ 38.7 \\ 44.1 \\ 48.6 \\ 22.5 \\ 25.1 \\ 25.3 \end{gathered}$	1500	dBm dB dB dB dB dB dBm	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=7 \mathrm{~V}, 50 \Omega \text { System, } \\ & \mathrm{P}_{\mathrm{IN}}=-8 \mathrm{dBm} \end{aligned}$ 3dB Bandwidth Appropriate values for the output DC blocking capacitor and bias inductor are required to maintain this VSWR over the intended operating frequency range. See note for Input VSWR. At 500 MHz 5 MHz to 1000 MHz At 500 MHz From 5 MHz to 1000 MHz At 10 MHz , Delta F1 and F2 $=1 \mathrm{MHz}$ At 500 MHz At 1000 MHz At 100 MHz , Delta F1 and F2 $=156 \mathrm{MHz}$ At 1000 MHz At 10 MHz At 500 MHz At 1000 MHz At 500 MHz $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=9 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=-8 \mathrm{dBm}$ At 500 MHz 5 MHz to 1000 MHz At 500 MHz From 5 MHz to 1000 MHz , At 10 MHz , Delta F1 and F2 $=1 \mathrm{MHz}$ At 500 MHz At 1000 MHz At 100 MHz , Delta F1 and F2 $=156 \mathrm{MHz}$ At 1000 MHz At 10 MHz At 500 MHz At 1000 MHz
Power Supply Supply Voltage (VD)	6	7	9	V	

Preliminary

RF2360

RF2360

Pin	Function	Description	Interface Schematic
$\mathbf{1}$	NC	No connection. This pin should be connected to the ground plane.	
$\mathbf{2}$	NC	Same as pin 1.	
$\mathbf{3}$	GND	Ground connection. Keep traces physically short and connect immedi- ately to ground plane for best performance. Each ground pin should have a via to the ground plane.	
$\mathbf{4}$	GND	Same as pin 3.	
$\mathbf{5}$	GND	Same as pin 3.	
$\mathbf{6}$	RF IN	RF input pin. This pin is internally DC blocked. An external DC blocking capacitor is not required.	
$\mathbf{7}$	NC	Same as pin 1.	
$\mathbf{8}$	NC	Same as pin 1.	
$\mathbf{9}$	NC	Same as pin 1.	
$\mathbf{1 0}$	NC	Same as pin 1.	
$\mathbf{1 1}$	NC	Same as pin 1.	
$\mathbf{1 2}$	GND	Same as pin 3.	
$\mathbf{1 3}$	GND	Same as pin 3.	
$\mathbf{1 4}$	RF OUT	RF output and bias pin. Because DC is present on this pin, a DC block- ing capacitor, suitable for the frequency of operation, should be used in most applications. For biasing, only an RF choke is needed.	
$\mathbf{1 5}$			
$\mathbf{1 6}$	NC	NC	Same as pin 1.

Application Schematic $869-894 \mathrm{MHz}$ Narrow band Operation

Evaluation Board Schematic - 50Ω

(Download Bill of Materials from www.rfmd.com.)

Evaluation Board Schematic－ 75Ω High Frequency （ 50 MHz to 2000 MHz ）

NOTES：
J 1 and J 2 are $75 \Omega \mathrm{~F}$ connectors．

Evaluation Board Schematic－ 75Ω Low Frequency

（ 5 MHz to 200 MHz ）

J 1 and J 2 are 75Ω F connectors．

Evaluation Board Layout - 50Ω
Board Size 1.5" x 1.5"
Board Thickness 0.031", Board Material FR-4

Evaluation Board Layout - 75Ω High Frequency (50 MHz to 2000 MHz)
Board Size 1.25" x 1.0"
Board Thickness 0.062", Board Material FR-4

Evaluation Board Layout - 75Ω Low Frequency (5 MHz to 200 MHz)

Gain, OIP2 and OIP3 versus Temperature

50 Ohm, 8V - Return Loss

75 Ohm, 8V - Return Loss

