Typical Applications

- Digital Communications Systems
 - GSM, DCS 1800, JDC, D-AMPS Systems
 - Spread-Spectrum Communication Systems
 - Commercial and Consumer Systems
 - GMSK, QPSK, DQPSK, QAM Modulation

Product Description

The RF2422 is a monolithic integrated quadrature modulator IC capable of universal direct modulation for highfrequency AM, PM, or compound carriers. This low-cost IC implements differential amplifiers for the modulation inputs, 90° carrier phase shift network, carrier limiting amplifiers, two matched double-balanced mixers, summing amplifier, and an output RF amplifier which will drive 50Ω from 800 MHz to 2500 MHz . Component matching, which can only be accomplished with monolithic construction, is used to full advantage to obtain excellent amplitude balance and phase accuracy.

Optimum Technology Matching ${ }^{\circledR}$ A pplied $\begin{array}{lll}\square \text { Si BJT } & \square \text { GaAs HBT } & \square \text { GaAs MESFET } \\ \square \text { Si Bi-CMOS } & \square \text { SiGe HBT } & \square \text { Si CMOS }\end{array}$

Functional Block Diagram

Package Style: SOIC-16

Features

- Single 5V Power Supply
- Integrated RF Quadrature Network
- No Tuning Required
- Low LO Input Level
- Digitally Controlled Power Down Mode
- 800 MHz to 2500 MHz Operation

Ordering Information

RF2422	2.5GHz Direct Quadrature Modulator
RF2422 PCBA	Fully Assembled Evaluation Board

RF2422

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +7.5	$\mathrm{~V}_{\mathrm{DC}}$
Input LO and RF Levels	+10	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does no assume responsibility for the use of the described product(s)

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Carrier Input Frequency Range Power Level Input VSWR	$\begin{gathered} 800 \\ -6 \end{gathered}$	$\begin{gathered} 5: 1 \\ 1.8: 1 \\ 1.2: 1 \end{gathered}$	$\begin{gathered} 2500 \\ +6 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{dBm} \end{aligned}$	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ At 900 MHz At 1800 MHz At 2500 MHz
Modulation Input Frequency Range Reference Voltage (VEF) Maximum Modulation (I\&Q) Gain Asymmetry Quadrature Phase Error Input Resistance Input Bias Current	$\begin{aligned} & \text { DC } \\ & 2.0 \end{aligned}$	$\begin{gathered} 3.0 \\ \\ 0.2 \\ 3 \\ 30 \end{gathered}$	$\begin{gathered} 250 \\ \mathrm{~V}_{\mathrm{REF}} \pm 1.0 \end{gathered}$ 40		
RF Output Output Power Output Impedance Output VSWR Harmonic Output Sideband Suppression Carrier Suppression IM_{3} Suppression Broadband Noise Floor	-3 -30 25 30 30 25	$\begin{gathered} 50 \\ 3.5: 1 \\ 1.3: 1 \\ 1.15: 1 \\ -35 \\ 35 \\ 35 \\ 35 \\ \\ 30 \\ \\ \\ -145 \\ -152 \\ \hline \end{gathered}$	+3	dBm Ω dBc dB dB dB dB $\mathrm{dBm} / \mathrm{Hz}$ $\mathrm{dBm} / \mathrm{Hz}$	$\mathrm{LO}=2 \mathrm{GHz}$ and $-5 \mathrm{dBm}, \mathrm{I} \& \mathrm{Q}=2.0 \mathrm{~V}_{\mathrm{PB}} \mathrm{SSB}$ At 900 MHz At 2000 MHz At 2500 MHz Intermodulation of the carrier and the desired RF signal Intermodulation of baseband signals At 20 MHz offset, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Tied to $\mathrm{V}_{\text {REF }}$: ISIG, QSIG, IREF, and QREF. At 850 MHz At 1900 MHz
Power Down Turn On/Off Time PD Input Resistance Power Control "ON" Power Control "OFF"	$\begin{aligned} & 50 \\ & 1.0 \end{aligned}$	1.2	100 2.8	$\begin{gathered} \mathrm{ns} \\ \mathrm{k} \Omega \\ \mathrm{~V} \\ \mathrm{~V} \end{gathered}$	Threshold voltage Threshold voltage
Power Supply Voltage Current	4.5	5 45	$\begin{aligned} & 6.0 \\ & 50 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$	Specifications Operating Limits Operating Power Down

RF2422

Pin	Function	Description	Interface Schematic
1	I REF	Reference voltage for the I mixer. This voltage should be the same as the DC voltage supplied to the I SIG pin. A voltage of 3.0 V is recommended. The SIG and REF inputs are inputs of a differential amplifier. Therefore the REF and SIG inputs are interchangeable. If swapping the I SIG and I REF pins, the Q SIG and Q REF also need to be swapped to maintain the correct phase. It is also possible to drive the SIG and REF inputs in a balanced mode. This will increase the gain.	
2	Q REF	Reference voltage for the Q mixer. This voltage should be the same as the DC voltage supplied to the Q SIG pin. A voltage of 3.0 V is recommended.	
3	GND2	Ground connection of the LO phase shift network. This pin should be connected directly to the ground plane.	
4	GND2	Same as pin 3.	
5	GND2	Same as pin 3.	
6	LO	The input of the phase shifting network. This pin has an internal DCblocking capacitor. At frequencies higher than 2 GHz this port is wellmatched to 50Ω. This port is voltage driven so matching at lower frequencies is not required.	LO O-mb
7	VCC1	Power supply for all circuits except the RF output stage. An external capacitor is needed if no other low frequency bypass capacitor is nearby.	
8	PD	Power Down control. When this pin is "low", all circuits are shut off. A "low" is typically 1.2 V or less at room temperature. When this pin is "high" (V_{CC}), all circuits are operating normally. If PD is below V_{CC}, output power and performance will be degraded. Operating in this region is not recommended, although it might be useful in some applications where power control is required.	
9	RF OUT	This is the 50Ω RF Output. This pin has an internal DC-blocking capacitor. At frequencies higher than 2 GHz this port is well-matched. Typical impedances at lower frequencies are: $24-\mathrm{j} 30 \Omega$ @ 1GHz, 27-j10 Ω @ $1.4 \mathrm{GHz}, 31-\mathrm{j} 3 \Omega @ 1.8 \mathrm{GHz}$. At those frequencies, external matching may be needed to optimize output power.	
10	GND3	Ground connection for the RF output stage. This pin should be connected directly to the ground plane.	
11	VCC2	Power supply for the RF Output amplifier. An external capacitor is needed if no other low frequency bypass capacitor is near by.	
12	GND1	Ground connection for the LO and baseband amplifiers, and for the mixers. This pin should be connected directly to the ground plane.	
13	GND1	Same as pin 12.	
14	GND1	Same as pin 12.	
15	Q SIG	Baseband input to the Q mixer. This pin is DC-coupled. Maximum output power is obtained when the input signal has a peak to peak amplitude of 2 V . The recommended DC level for this pin is 3.0 V . The peak minimum voltage on this pin ($\mathrm{V}_{\text {REF }}$ - peak modulation amplitude) should never drop below 2.0 V . The peak maximum voltage on this pin ($\mathrm{V}_{\text {REF }}+$ peak modulation amplitude) should never exceed 4.0 V .	See pin 2.

RF2422

Pin	Function	Description	Interface Schematic
$\mathbf{1 6}$	I SIG	Baseband input to the I mixer. This pin is DC-coupled. Maximum output power is obtained when the input signal has a peak to peak amplitude of 2V. The recommended DC level for this pin is 3.0V. The peak mini- mum voltage on this pin (V $\mathrm{V}_{\text {REF }}$ - peak modulation amplitude) should never drop below 2.0V. The peak maximum voltage on this pin (VEF + peak modulation amplitude) should never exceed 4.0V.	See pin 1.

Application Schematic AC-Coupled

Application Schematic DC-Coupled

Evaluation Board Schematic

$$
1.5^{\prime \prime} \times 1.5^{\prime \prime}
$$

(Download Bill of Materials from www.rfmd.com.)

Evaluation Board Layout Board Size 1.510" x 1.510"
Board Thickness 0.031", Board Material FR-4

