RF2670

MICRO•DEVICES
8MHZ DUAL BASEBAND AGC WITH PROGRAMMABLE LOW PASS FILTERING

Typical Applications

- Digital Cordless Telephones
- Secure Communication Links
- Wireless LANs

- Inventory Tracking

- Wireless Security
- Battery Powered Applications

Product Description

The RF2670 is a monolithic integrated circuit specifically designed for direct conversion to baseband QPSK receivers. The part provides dual baseband amplifiers with a 70 dB gain range (single pin analog input) and separate I and Q RSSI. On-chip programmable baseband filters are incorporated into each amplifier providing $1 \mathrm{MHz}, 2 \mathrm{MHz}$, 4 MHz , or 8 MHz bandwidth with a 5 -pole Bessel response. I and Q output are available in digital or analog form. The data comparators use a self generated DC reference to track DC offsets in the received signal. The analog outputs have a 500 mVpp swing with approximately 1.7 V DC offset. A 2.0 V reference voltage is also available for A / D converters changing DC bias.

Optimum Technology Matching ${ }^{\circledR}$ AppliedSi BJTGaAs HBTGaAs MESFET
Si Bi-CMOSSiGe HBTSi CMOS

Functional Block Diagram

Package Style: SSOP-24

Features

- I/Q Baseband Receivers
- 10 dB to 80 dB Gain Range
- Digital and Analog Outputs
- On-Chip Selectable IF Bandwidths
- Reference Voltage for A/D Converter
- 2.7V to 3.6V Operation

Ordering Information	
RF2670	8MHz Dual Baseband AGC with Programmable Low
RF2670PCBA	Pass Filtering
Fully Assembled Eval Board.	

RF2670

Absolute Maximum Ratings

Parameter	Ratings	Unit
Supply Voltage	-0.5 to +3.6	$\mathrm{~V}_{\mathrm{DC}}$
Control Voltages	-0.5 to +3.6	$\mathrm{~V}_{\mathrm{DC}}$
Input RF Level	+20	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

Caution! ESD sensitive device.

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

RF2670

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Power Supply Voltage	2.7	3.0	3.6	V	
Current Consumption		13	17 1	mA	$\mathrm{HA}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{PD}=$ High
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ;$ Sleep Mode, PD=Low					

RF2670

Pin	Function	Description	Interface Schematic		
$\mathbf{1}$	IN I-	Complementary input for the in-phase IF channel.			
$\mathbf{2}$	IN I+	Input for the in-phase IF channel.			
$\mathbf{3}$	GND2	Ground for VCC2.			
$\mathbf{4}$	DCFB I	DC feedback capacitor for in-phase channel.			
$\mathbf{5}$	VCC2	Power supply for VGA amplifier 3, differential to single-ended converter, and post filter.			
$\mathbf{6}$	GND3	Ground for VCC3.			
$\mathbf{7}$	IF OUT I	Analog signal IF output for in-phase channel.			
$\mathbf{8}$	VCC3	Power supply for data amplifier.			
$\mathbf{9}$	I DATA	Logic-level data output for the in-phase channel. This is a digital output signal obtained from the output of a Schmitt trigger.			
$\mathbf{1 0}$	RSSI I	Received signal strength indicator for the in-phase channel.			
$\mathbf{1 1}$	PD	Enable pin for the receiver circuits. PD>2.0V powers up all of the func- tions. PD<1.0V turns off all of the functions.			
$\mathbf{1 2}$	GND1	Ground for VCC1 for both the in-phase and quadrature channels.			
$\mathbf{1 3}$	BW SEL1	Bandwidth select logic input. Pin 13 and pin 14 provide a two bit control word for the setting of the IF bandwidth. See Table 1. Additional filtering should be used at the amplifiers to precisely control the 3dB bandwidth of the system. See design information details about differential input fil- ters.			
$\mathbf{1 4}$	BW SEL2	See pin 13.			
$\mathbf{1 5}$	Q DATA	Logic-level data output for the quadrature channel. This is a digital out- put signal obtained from the output of a Schmitt trigger.			
$\mathbf{1 6}$	RSSI Q	Received signal strength indicator for the quadrature channel.			
$\mathbf{1 7}$	VREF	Gain control reference voltage.			
$\mathbf{1 8}$	IF OUT Q	Analog signal IF output for quadrature channel.			
$\mathbf{1 9}$	VGC	Gain control voltage.			
$\mathbf{2 0}$	VCC1	Power supply for bias circuits and VGA amplifiers for both the in-phase and quadrature channels.			
$\mathbf{2 1}$	DCFB Q	DC feedback capacitor for quadrature channel.			
$\mathbf{2 2}$	GND1	Ground for VCC1 for both the in-phase and quadrature channels.			
$\mathbf{2 3}$	IN Q+	Plus input for quadrature channel $\mathbf{2 4}$	IN Q-		Minus input for quadrature channel
:---					

Table 1: Bandwidth Selection Controls

BWSEL1	BWSEL2	IF $_{-3 \mathrm{~dB}}$ Frequency
0	0	1 MHz
0	1	2 MHz
1	0	4 MHz
1	1	8 MHz

RF2670

Differential Filter Design Information

Butterworth Response

$$
\begin{gathered}
C 1=\frac{C 1 b w \cdot \frac{1}{2} \cdot 10^{12}}{2 \cdot \pi \cdot f c \cdot R L} ; C 2=\frac{C 2 b w \cdot \frac{1}{2} \cdot 10^{12}}{2 \cdot \pi \cdot f c \cdot R L} ; L=\frac{L b w \cdot R L \cdot 10^{6}}{2 \cdot \pi \cdot f c} \\
C 1 b w=5.1672 ; C 2 b w=15.4554 ; L b w=0.1377
\end{gathered}
$$

$$
R S=125 ; R L=1000 ; \frac{R S}{R L}=0.125
$$

Differential LC Filter Component Values (Butterworth Response)

RF2670

Differential Filter Design Information (Cont.)

Bessel Response

$$
\begin{gathered}
C 1=\frac{C 1 b w \cdot \frac{1}{2} \cdot 10^{12}}{2 \cdot \pi \cdot f c \cdot R L} ; C 2=\frac{C 2 b w \cdot \frac{1}{2} \cdot 10^{12}}{2 \cdot \pi \cdot f c \cdot R L} ; L=\frac{L b w \cdot R L \cdot 10^{6}}{2 \cdot f c} \\
C 1 b w=2.9825 ; C 2 b w=15.4697 ; L b w=0.0860
\end{gathered}
$$

$$
R S=125 ; R L=1000 ; \frac{R S}{R L}=0.125
$$

Pin Out

RF2670

Evaluation Board Schematic

(Download Bill of Materials from www.rfmd.com.)

L1-L4 and C1-C4 make two LPFs. The fc of the RF2670 is variable; therefore the L and C components must be variable. The following table gives recommended component values ("std" indicates standard eval board value). Desired BW BW1, BW2
700 CHz
70

Evaluation Board Layout Board Size 3.0" x 2.0"

RF2670

RF2670 IF Bandwidth Response

10

RF2670

RF2670

IF AMPLIERS

