## Typical Applications

- W-CDMA Systems


## Product Description

The RF2690 is an integrated complete IF AGC amplifier and quadrature demodulator designed for the receive section of W-CDMA applications. It is designed to amplify received IF signals, while providing 70 dB of gain control range, a total of 90 dB gain, and demodulation to baseband I and Q signals. This circuit is designed as part of RFMD's single mode W-CDMA chipset, which includes the RF9678 as modulator and IF AGC and the RF2638 as upconvertor. The IC is manufactured on an advanced $25 \mathrm{GHz} \mathrm{F}_{\mathrm{T}}$ Silicon Bi-CMOS process, and is packaged in a 20 -pin, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, leadless chip carrier.

Optimum Technology Matching ${ }^{\circledR}$ Applied


Functional Block Diagram


Package Style: LCC, 20-Pin, 4x4

## Features

## - Digitally Controlled Power Down Mode

- 2.7V to 3.3V Operation
- Digital LO Quadrature Divide-by-4
- IF AGC Amp with 70dB Gain Control
- 80dB Maximum Voltage Gain

| Ordering Information |  |
| :--- | :--- |
| RF2690 | W-CDMA Receive AGC and Demodulator |
| RF2690 PCBA | Fully Assembled Evaluation Board |

## RF2690

Absolute Maximum Ratings

| Parameter | Rating | Unit |
| :--- | :---: | :---: |
| Supply Voltage | -0.5 to +5 | $\mathrm{~V}_{\mathrm{DC}}$ |
| Power Down Voltage ( $\left.\mathrm{V}_{\mathrm{PD}}\right)$ | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.7$ | $\mathrm{~V}_{\mathrm{DC}}$ |
| Input RF Power | +3 | dBm |
| Ambient Operating Temperature | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | -40 to +150 | ${ }^{\circ} \mathrm{C}$ |

Caution! ESD sensitive device.

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s)

| Parameter | Specification |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | Max. |  |  |
| Overall Inputs and AGC | -20 | $\begin{gathered} 190 \\ 1200 \\ 2400 \end{gathered}$ | 0 | $\begin{gathered} \mathrm{MHz} \\ \Omega \\ \Omega \end{gathered}$ | $\begin{aligned} & \text { Temp }=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{Z}_{\mathrm{LOAD}}=60 \mathrm{k} \Omega \text { diff., } \\ & \mathrm{LO}=760 \mathrm{MHz} @-10 \mathrm{dBm}, \mathrm{Z}_{\text {SOURCE }}=500 \Omega \\ & \text { diff. } \end{aligned}$ |
| IF Frequency |  |  |  |  |  |
| W-CDMA IF Input Impedance |  |  |  |  | Single-ended |
|  |  |  |  |  | Balance. An external resistor across the differential input is used to define the input impedance. |
| LO Frequency |  | 760 |  | MHz <br> dBm <br> $\Omega$ <br> dB |  |
| LO Input Level |  | -10 |  |  |  |
| LO Input Impedance | 76 | $81$ |  |  | Single-ended. |
| Maximum Voltage Gain |  |  |  |  | Pin-to-Pin voltage gain. <br> Note: 10 dB additional voltage gain in input match $50 \Omega$ to $500 \Omega$. |
| Minimum Voltage Gain | 5 | 12 | $\begin{array}{r} 15 \\ +3 \end{array}$ | dB |  |
| Gain Variation versus $\mathrm{V}_{\mathrm{CC}}$ and Temperature | -3 | $\pm 1$ |  |  |  |
| Gain Control Voltage | 0.3 |  | 2.4 | V | Defined with external $10 \mathrm{k} \Omega$ resistor in series with $\mathrm{V}_{\mathrm{GC} 1}$ pin. Analog gain control. |
| Input IP3 | -52 | -48 |  | dBm | Blockers at 10 MHz and 20 MHz offset. <br> Maximum Gain. $\mathrm{V}_{\mathrm{GC}}=2.4 \mathrm{~V}$ |
|  |  | -5 | 0 | dBm | Minimum Gain. $\mathrm{V}_{\mathrm{GC}}=0.3 \mathrm{~V}$ |
| Noise Figure |  | 5 |  | dB | Maximum Gain. $\mathrm{V}_{\mathrm{GC}}=2.4 \mathrm{~V}$ |
| Inband Output 1 dB Compression | 1.5 | 2.0 |  | $\mathrm{V}_{\mathrm{P}-\mathrm{P}}$ | Measured differentially. |
| Compression |  |  |  |  | Out of band blocker causing 1 dB of inband gain compression. Blocker at 5 MHz . |
|  |  | -48 |  | dBm | Maximum Gain. $\mathrm{V}_{\mathrm{GC}}=2.4 \mathrm{~V}$ |
|  |  | -17 |  | dBm | Minimum Gain. $\mathrm{V}_{\mathrm{GC}}=0.3 \mathrm{~V}$ |
|  |  |  |  |  | Butterworth third order, $\mathrm{F}_{\mathrm{C}} 2.5 \mathrm{M} \pm 10 \%$ |
| Baseband 3dB Bandwidth | 2.25 | 2.5 | 2.75 | MHz |  |
|  |  |  |  |  | Calibrated. $\mathrm{F}_{\text {CLK }}=13 \mathrm{MHz}$ |
| Sideband Suppression |  |  | 27 | dB | A measure of IQ gain match and IQ quadrature accuracy. Measured for baseband frequencies 100 kHz to 2.5 MHz . |
| DC Offset |  |  | $\pm 40$ | mV |  |
| Baseband External Load |  | 20 | 60 | $k \Omega$ | Resistive Load Impedance. Differentially across pins. |
|  |  |  | 5 | pF | Capacitive Load Impedance. To ground. |
| Output DC Voltage | $\mathrm{V}_{C C}-1.3$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1.6 \\ \pm 0.2 \\ \pm 2 \end{gathered}$ | $\mathrm{V}_{\mathrm{CC}}-1.9$ | V <br> dB degree |  |
| IQ Amplitude Balance |  |  | $\pm 0.5$ |  | $\mathrm{V}_{\mathrm{GC}}=0.3 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=-40 \mathrm{dBm}$ |
| IQ Phase Balance |  |  | $\pm 5$ |  | $\mathrm{V}_{\mathrm{GC}}=0.3 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=-40 \mathrm{dBm}$ |

## Preliminary

## RF2690

| Parameter | Specification |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | Max. |  |  |
| Auto Calibration <br> $\mathrm{F}_{\text {CLK }}$ Input Frequency ${ }^{1}$ <br> $F_{\text {CLK }}$ Signal Level <br> $\mathrm{F}_{\text {CLK }}$ Pin Input Impedance <br> Calibration Time <br> Current, Auto Cal. <br> Current, Once Auto Cal Finished CALEN | 0.4 | 13 <br> 20 <br> TBD | $\begin{gathered} 1.0 \\ \\ 200 \\ 1 \\ 1 \end{gathered}$ | $\begin{gathered} \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ \mathrm{k} \Omega \\ \mathrm{us} \\ \mathrm{~mA} \\ \mathrm{uA} \end{gathered}$ | Single-ended. <br> Disabled after calibration. |
| DC Specifications <br> Supply Voltage Current Consumption Power Down W-CDMA Warm-up W-CDMA <br> Logic Levels $\mathrm{V}_{\text {EN }}$ High Voltage $\mathrm{V}_{\text {EN }}$ Low Voltage | 2.7 $\begin{gathered} 1.8 \\ 0 \end{gathered}$ | $\begin{gathered} 3.0 \\ \\ <1 \\ 5 \\ 8 \end{gathered}$ | 3.3 $\mathrm{V}_{\mathrm{CC}}$ $0.5$ | V <br> $\mu \mathrm{A}$ <br> mA <br> mA <br> V <br> V |  |

${ }^{1}$ Bondout option available for $15.36 \mathrm{MHz}, 18 \mathrm{MHz}$ and 19 MHz .

## RF2690

## Auto Calibration Mode

The filters are automatically tuned when the ENCAL pin goes high. The filters are reset to a nominal value whenever the ENCAL pin goes low. The auto calibration circuitry is independent of the EN WUP and the EN RX control pins.
The EN RX and ENCAL pins can be connected together if desired.
Mode Control Truth Table

| Mode | EN RX | EN WUP |
| :--- | :---: | :---: |
| Power Down | 0 | X |
| W-CDMA RX Warm-Up | 1 | 0 |
| W-CDMA RX | 1 | 1 |

## Logic

| EN RX | Chip Enable | If EN RX=0, then entire IC is powered down. |
| :--- | :---: | :---: |
| EN WUP | Warm-up Enable | If EN WUP $=0$, then IC is in warm-up mode. |


| Pin | Function | Description | Interface Schematic |
| :---: | :---: | :---: | :---: |
| 1 | VGC1 | Analog gain control. Valid control voltage ranges are from 0.5 V to 2.5 V . These voltages are valid with a $10 \mathrm{k} \Omega$ resistor in series with GC pin. |  |
| 2 | NC | Unused. Connect to signal ground in application. |  |
| 3 | NC | Unused. Connect to signal ground in application. |  |
| 4 | $\begin{gathered} \text { W-CDMA } \\ \text { IN+ } \end{gathered}$ | W-CDMA balanced input pin. This pin is internally DC-biased and should be DC-blocked if connected to a device with a DC level present. For single-ended input operation, one pin is used as an input and the other W-CDMA input is AC coupled to ground. The balanced input impedance is $2.4 \mathrm{k} \Omega$, while the single-ended input impedance is $1.2 \mathrm{k} \Omega$. |  |
| 5 | $\begin{aligned} & \text { W-CDMA } \\ & \text { IN- } \end{aligned}$ | Same as pin 4, except complementary input. | See pin 4. |
| 6 | VCC | Supply |  |
| 7 | GND | Connect to ground. |  |
| 8 | LO | LO input pin. This input is internally DC-biased and should be DCblocked if connected to a device with DC present. The frequency of the signal applied to this pin is internally divided by a factor of four, hence the LO applied should be four times the frequency of the IF. |  |
| 9 | EN WUP | Warm-up mode enable. The input LO buffers and divider chains are enabled. When logic "low" ( $\leq 0.5 \mathrm{~V}$ ), chip is in warm-up mode. When logic "high" (VCC-0.3V), chip is in W-CDMA RX mode. |  |
| 10 | EN RX | Chip enable. Power down. When logic "low" ( $\leq 0.5 \mathrm{~V}$ ), all circuits are turned off. When logic "high" (VCC-0.3V), all circuits are operating. |  |
| 11 | Q OUT- | Complementary output to Q OUT+. |  |
| 12 | Q OUT+ | Balanced baseband output of Q mixer. This pin is internally DC-biased and should be DC-blocked externally. The output may be used singleended by leaving one of the pins unconnected, however half of the output voltage will be lost. |  |
| 13 | I OUT- | Complementary output to I OUT. |  |
| 14 | IOUT+ | Balanced baseband output. |  |
| 15 | ENCAL | Calibration enable. |  |
| 16 | FCLK | $\mathrm{F}_{\text {CLK }}$ clock reference for the automatic calibration circuitry. | $\operatorname{wn}_{20 \mathrm{kR}}$ |
| 17 | IF- | Complementary output to IF. |  |
| 18 | IF+ | IF test point output. This balanced node is pinned out to allow for monitoring of the AGC output signal as it enters the demodulator. During normal operation, this pin and its complementary output should be left floating and not connected. |  |

## RF2690

| Pin | Function | Description | Interface Schematic |
| :---: | :---: | :--- | :--- |
| 19 | VREF2V | 2V voltage reference decouple (i.e., 10nF to ground). |  |
| 20 | VGC2 | Gain control decouple (i.e., 10 nF to ground). |  |
| Pkg <br> Base | Die | Ground. |  |

## Preliminary

## RF2690

## Application Notes

## Voltage Gain Measurement Set-up

The evaluation board uses a unity voltage gain Op-Amp to simulate the $60 \mathrm{k} \Omega$ differential load impedance condition for the chip. The $50 \Omega$ output impedance of Op-Amp makes the use of a $50 \Omega$ spectrum analyzer power measurement possible. The power gain measured will be considered as RAW Gain. The input impedance of the chip is $500 \Omega$ differential by adding a parallel $680 \Omega$ resistor. The input transformer matches $50 \Omega$ to $500 \Omega$ and results in 10 dB difference between voltage gain and power gain, hence, the voltage gain of the chip is RAW Gain minus 10 dB . Because the input transformer loss is 0.8 dB , it needs to be added to the gain. Since the Op-Amp has the unity voltage gain, the voltage at the evaluation board output is the same as the voltage at chip I or Q output. Therefore, the voltage gain of the chip with $60 \mathrm{k} \Omega$ load can be calculated by

Gv=RAW Gain-10+0.8(dB)

## Input IP3 Measurement

The input IP3 measurement is based on a two tone inter-modulation test condition from the 3GPP standard, which specifies two tones with offset frequencies at 10 MHz and 20 MHz . Due to the on-chip baseband filtering, the two tone output is attenuated and cannot be seen. Since the only parameter observable is the IM3 product, the input IP3 then is calculated by

IIP3 $=$ Pin $+0.5^{*}($ Pin + RAW Gain-IM3 $)$

## Noise Figure Measurement

The noise figure measurement is based on the noise figure definition $N F=N_{O}-N_{1}-$ Gain, where $N_{O}$ is the output noise density, $\mathrm{N}_{\mathrm{I}}$ is the input noise density ( $-174 \mathrm{dBm} / \mathrm{Hz}$ when no input signal is applied) and Gain is the RAW Gain. The output noise density $\mathrm{N}_{\mathrm{O}}$ is measured at 1 MHz offset when no signal input is applied. The NF is calculated by $\mathrm{NF}=\mathrm{N}_{\mathrm{O}^{-}}$ $174 \mathrm{dBm} / \mathrm{Hz}$-RAW Gain. Since the I and Q re-combination will provide 3dB extra for signal-to-noise ratio, the actual noise figure is should be reduced by 3 dB . In addition, noise figure should be reduced by the input transformer loss of 0.8 dB . Therefore, the NF is calculated by

$$
N F=N_{\mathrm{O}}+174-\text { RAW Gain-3-0.8(dB) }
$$

1 dB Gain Compression Point Voltage at Baseband Output
The device has a relatively constant 1 dB gain compression point versus $\mathrm{V}_{\mathrm{GC}}$. Gain compression is tested with a CW signal with $60 \mathrm{k} \Omega$ load differential.

## How to Calculate the Power Gain of the Demodulator

In the system analysis for cascaded gain, noise and IP, it is often required to calculate the power gain of the demodulator chip itself in matched load condition. Below is an example on how to determine this power gain value.

For this example, the load impedance is $60 \mathrm{k} \Omega$ differential, the output AC impedance of the I or Q port is $500 \Omega$, the measured RAW Gain is 95 dB .

First, the power gain from the input of the chip to the input of Op-Amp needs to be calculated. Since the voltage at the $50 \Omega$ load and the voltage at Op-Amp input are the same, the difference of the power gain across the Op-Amp is the ratio of load impedances. Hence, the power gain to the Op-Amp input is $95 \mathrm{~dB}-10 \log (60000 / 50)=95-30=65 \mathrm{~dB}$.

Second, the power gain of the demodulator itself with matched load is calculated. The mismatch coefficient a is determined by the mismatch coefficient equation

$$
\alpha=10 \log \frac{4 R_{S} R_{L}}{\left(R_{S}+R_{L}\right)^{2}}=10 \log \frac{4 \cdot 500 \cdot 60000}{(500+60000)^{2}}=-15 d B
$$

## RF2690

Since the power gain to the input of the Op-Amp $G_{p}{ }^{\prime}=\alpha G_{p}$ where $G_{p}$ is the power gain of demodulator for matched load. Therefore, the demodulator power gain is $65+15=80 \mathrm{~dB}$.

## AC Coupling in Evaluation Board

The output I and Q baseband signal is AC coupled for evaluation purposes only. The high-pass corner frequency is at $1 /(2 \pi \mathrm{RC})=1 /\left(6.28^{*} 30 \mathrm{k} \Omega^{*} 100 \mathrm{nF}\right)=56 \mathrm{~Hz}$.

## I and Q Output DC Voltage and Its Offset

Although the I and Q output is AC coupled on the evaluation board, in most applications, it would be DC coupled to the ADC input buffer. The DC voltage at the IC output is $\mathrm{V}_{C C}-1.6 \mathrm{~V}$ with a possible variation of $\pm 0.3 \mathrm{~V}$ due to temperature and tolerance. The differential circuit asymmetry would cause common mode DC offset to the extent of $\pm 40 \mathrm{mV}$.

## Baseband Filter Calibration Process

The BB (baseband) filter calibration process is same for both WCDMA and GSM/DCS. After calibration is done, the WCDMA mode sets the circuitry to have a 3 dB bandwidth of 2.5 MHz , the GSM/DCS mode (if the chip has GSM/DCS mode) sets the circuitry to have a 3 dB bandwidth of 250 kHz .

The BB filter in the I and Q path needs to be calculated every time after power down. When the FCLK pin is connected to a signal generator with 0 dBm output level at 13.0 MHz , a logic high at CALEN pin for $200 \mu$ s will calibrate the filter to have 2.5 MHz bandwidth with $10 \%$ accuracy when WCDMA mode is set, or to 250 kHz bandwidth with $10 \%$ accuracy when GSM mode is set. The calibration is done when the chip is powered on only. Calibration is independent from all other conditions, e.g. the chip enable could be off.

The calibration circuitry consumes $400 \mu \mathrm{~A}$. When the calibration sequence is complete after $200 \mu \mathrm{~s}$, the $\mathrm{I}_{\mathrm{CC}}$ drops to 0 mA .

The 3 dB bandwidth is defined to be from the reference level at 1 MHz for WCDMA and at 50 kHz for GSM/DCS. The 3dB bandwidth is independent of $\mathrm{V}_{\mathrm{GC}}$ and $\mathrm{V}_{\mathrm{CC}}$.

The filter can also be calibrated with different clock frequencies from 10 MHz to 30 MHz to tune the bandwidth over $-40 \%$ to $+60 \%$ from its default 3 dB bandwidth $(2.5 \mathrm{MHz}$ for WCDMA and 250 kHz for GSM). The 3 dB bandwidth is linear with clock frequency.


## Application Schematic



## Evaluation Board Schematic

(Download Bill of Materials from www.rfmd.com.)


## Evaluation Board Layout <br> Board Size 3.1" x 3.0"

Board Thickness 0.032", Board Material FR-4




NF versus $\mathrm{V}_{\mathrm{Gc}}$


W-CDMA Baseband Filter Response (Calibrated) (IF=190MHz to $\left.195 \mathrm{MHz}, \mathrm{LO}=760 \mathrm{MHz} @-10 \mathrm{dBm}, \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gc}}=2.4 \mathrm{~V}\right)$



Voltage Gain versus $\mathrm{V}_{\mathrm{GC}}$ (Temp. $+\mathbf{2 5 ^ { \circ }} \mathbf{C},-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ )
(IF Freq. 190MHz, LO Freq. $760 \mathrm{MHz} @-10 \mathrm{dBm}, \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gc}}=2.4 \mathrm{~V}$ to 0.3 V )


Voltage Gain versus $\mathrm{V}_{\mathrm{GC}}\left(\right.$ Temp. $+25^{\circ} \mathrm{C},-\mathbf{4 0 ^ { \circ }} \mathrm{C},+85^{\circ} \mathrm{C}$ )




IIP3 versus $\mathrm{V}_{\mathrm{GC}}$ (Temp. $-40^{\circ} \mathrm{C}$ )


IIP3 versus $\mathrm{V}_{\mathrm{GC}}$ (Temp. $25^{\circ} \mathrm{C}$ )


IIP3 versus $\mathrm{V}_{\mathrm{GC}}$ (Temp. $+85^{\circ} \mathrm{C}$ )
(IF Freq. 190MHz, LO Freq. $760 \mathrm{MHz} @-10 \mathrm{dBm}, \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, 3.0 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gc}}=2.4 \mathrm{~V}$ to


