RECHARGEABLE LITHIUM-ION CELL PROTECTORS

RV5VG1 XXX SERIES

RIGOH

EK-080-9803

OUTLINE

The RV5VG^{**} series Li-ion cell protectors are circuits designed for detecting overcharging and excessive discharging of rechargeable single-cell lithium-ion batteries (based on the CMOS process). Besides detecting overcharging or excessive discharging of single cell Li-ion battery, the RV5VG1^{**} series Li-ion cell protectors include a short-circuit protector to prevent excessive current due to an external short-circuit.

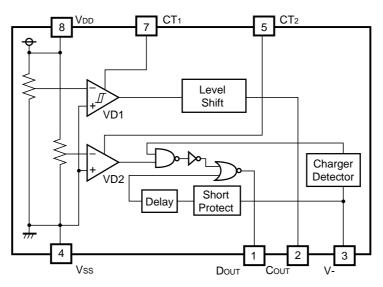
Each of these protectors comprise two voltage detectors, a hysteresis circuit, a reference voltage source, a logic circuit, a short-circuit protector and a charger connection detection-circuit. Of the two voltage detectors, VD1 detects overcharging (rising edge of waveform) while VD2 detects excessive discharging (falling edge of waveform). Voltage output switches to a low ("L") state if either a rising or falling voltage level is detected. When a short protection circuit is activated while DOUT output is at "H" level, DOUT output switches to "L" level after internally set delay time, which, in turn, switches to "H" level when short is cleared. Required current after detection of over-discharge is suppressed to minimum by stopping the internal circuit.

Using an external capacitor, the output delay time of the voltage detector for excessive discharge/overcharge can be set.

The series employ CMOS output type.

FEATURES

Low Supply Current	··TYP. 2.3µA (for no	rmal operations)
High Accuracy Detector Threshold	··over-charge	±50mV
	over-discharge	±2.5%
Variety of Detector Threshold	··over-charge	$4.0 \ to \ 4.5 \ V(0.05V \ step)$
	over-discharge	2.0 to 3.0V(0.05V step)
Built-in Protection Circuit		
\bullet Short protection voltage may be set insteps 0.05V within th	e range of 0.1V to 0.	$4V(accuracy \pm 15\%)$
Adustable sensing delay for overcharging	delay of 43ms whe	n external 1000pF is installed
	(VDD=4.3V)	
• Adjustable sensing delay for excessive discharging	delay of 24ms whe	n external 1000pF is installed
	(VDD=2.4V)	
• Output Type ·····	··CMOS	
Small Package	··8pin SSOP	


APPLICATIONS

• Li-ion single cell protectors for power pack.

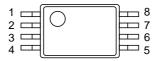
• High precision protectors for cellular phones, camcorders and any other gadgets using Li-ion cell.

BLOCK DIAGRAM

SELECTION GUIDE

In the RV5VG1^{**} series, the overcharge/excessive discharge detector threshold, respective hysteresis ranges, short-circuit detector threshold and taping type can be selected at the user's request.

The selection can be made by designating the part number as shown belows.


 $RV5VG1\underbrace{\times\!\!\!\times\!\!\!\times\!\!}{\leftarrow} \underbrace{\operatorname{Part}} \operatorname{Number}$

 $\overrightarrow{\uparrow}\uparrow\overrightarrow{\uparrow}$

Code	Contents					
a	Development serial number for overcharging/excessive discharge detector threshold, hyster- ranges, and short-circuit detector threshold.					
b	Designation of release conditions of voltage detector. C: VD1 (After over-charge detection)when battery voltage falls below VDET1–VHYS1 or a load resistance is applied. VD2 (After excessive-discharge detection)when a charger is connected. D: VD1 (After over-charge detection)when battery voltage falls below VDET1–VHYS1. VD2 (After excessive-discharge detection)when battery voltage falls below VDET1–VHYS1. VD2 (After excessive-discharge detection)when battery voltage falls below VDET1–VHYS1. VD2 (After excessive-discharge detection)when battery voltage rises above VDET2+VHYS2 or a charger is connected.					
с	Designation of Taping Type: EX. 8pin SSOP: E1, E2 (refer Taping Specifications) "E2" is prescribed as a standard.					

PIN CONFIGURATION

• 8pin SSOP (0.65mm pitch)

PIN DESCRIPTION

Pin No.	Symbol	Pin Description
1	Dout	Output Pin of over-discharge detection, CMOS output
2	Cout	Output Pin of over-charge detection, CMOS output
3	V-	Pin for charger negative input
4	Vss	Ground Pin
5	CT2	Pin for external capacitor for setting output delay of VD2
6	NC	No connection
7	CT1	Pin for external capacitor for setting output delay of VD1
8	Vdd	Power supply Pin

ABSOLUTE MAXIMUM RATINGS

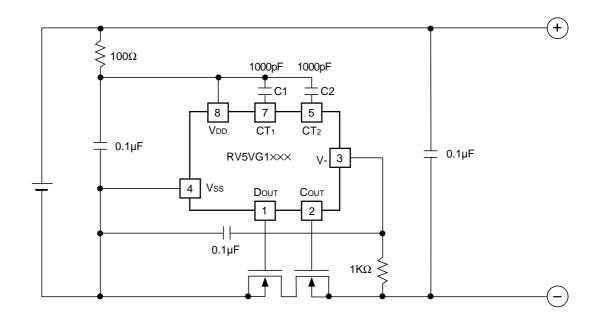
ABSOLUTE MAAIMONI RATINGS					
Symbol	Iter	n	Ratings	Unit	
Vdd	Supply Voltage		-0.3 to +12	V	
V-	T (37 1)	V-pin	$V_{DD}-12$ to $V_{DD}+0.3$	V	
VCT1, VCT2	Input Voltage	CT1, CT2 pin	Vss-0.3 to Vdd+0.3	V	
VCOUT	Output Voltago	Cout pin	V_{DD} –12 to V_{DD} +0.3	V	
Vdout	Output Voltage	Dout pin	Vss-0.3 to Vdd+0.3	V	
Pd	Power Dissipation	·	300	mW	
Topt	Operating Temper	ature Range	-30 to +80	°C	
Tstg	Storage Temperature Range		-55 to +125	°C	
Tsolder	Lead Temperature (Soldering)		260°C, 10s		

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits.

ELECTRICAL CHARACTERISTICS

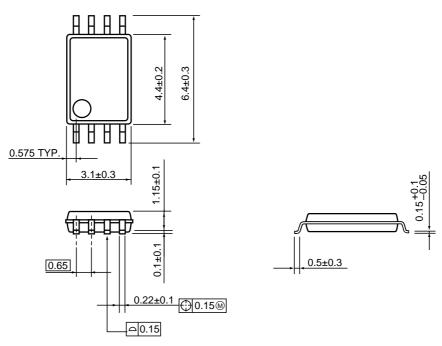
• RV5VG101C

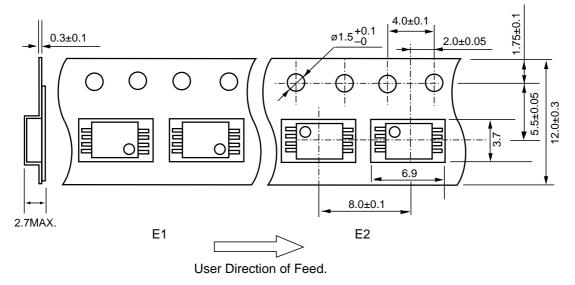

Topt=2						Topt=25
Symbol	ltem	Conditions	MIN.	TYP.	MAX.	Unit.
VDD1		VDD to Vss	1.2		5	V
VDD2	Operating Input Voltage	Vdd to V-	1.2		10	V
VDET1	Over-charge Detector Threshold	Voltage rising edge detection	4.20	4.25	4.30	V
VHYS1	Over-charge Detector Hysteresis Range		0.15	0.20	0.25	V
tvdet1	VDET1 Output Delay Time	C1=1000pF, VDD=3.6V-4.3V	22	43	86	ms
Vdet2	Over-discharge Detector Threshold	Voltage falling edge detection	2.437	2.50	2.563	V
tvdet2	VDET2 Output Delay Time	C2=1000pF, VDD=3.6V-2.4V	12	24	48	ms
Vshort	Short protection Voltage	VDD=3.9V	0.17	0.2	0.23	V
tshort1	Chart motorier Dolon Time	VDD=3.0V, V-=0V-1-V	2.4	4.8	9.6	
tshort2	- Short protection Delay Time	VDD=2.0V, V-=0V-1-V	1.4	2.8	5.6	ms
Vol1	COUT Nch Tr. ON Voltage	IOL=100µA, VDD=4.4V		0.17	0.5	V
Voh1	COUT Pch Tr. ON Voltage	Iон=-100µА, Vdd=3.9V	3.4	3.73		V
Vol2	DOUT Nch Tr. ON Voltage	IOL=100µA, VDD=2.4V		0.17	0.5	V
Voh2	DOUT Pch Tr. ON Voltage	IOH=-100µA, VDD=3.9V	3.4	3.73		V
Idd	Supply Current	$V_{DD}=3.9V, V=0V$		2.3	5.0	μA
Istandby	Standby Current	VDD=2.4V, V-=2.4V		0.2	2.5	μA
Vchg	Charger Sense Minimum Voltage	VDD=3.3V		0.13	0.2	v
Rshort	V- pin pull down resistance	VDD=3.9V, V-=1.0V	65	130	260	kΩ

RV5VG1 💥

• RV5VG101D

					,	Topt=25°
Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit.
VDD1	On anotin a Lanut Walte as	VDD to Vss	1.2		5	V
VDD2	Operating Input Voltage	Vdd to V-	1.2		10	V
VDET1	Over-charge Detector Threshold	Voltage rising edge detection	4.20	4.25	4.30	v
VHYS1	Over-charge Detector Hysteresis Range		0.15	0.2	0.25	V
tvdet1	VDET1 Output Delay Time	C1=1000pF, VDD=3.6V-4.3V	22	43	86	ms
VDET2	Over-discharge Detector Threshold	Voltage falling edge detection	2.437	2.50	2.563	v
VHYS2	Over-discharge Detector Hysteresis Range		0.50	0.60	0.70	v
tvdet2	VDET2 Output Delay Time	C2=1000pF, VDD=3.6V-2.4V	12	24	48	ms
Vshort	Short protection Voltage	VDD=3.9V	0.17	0.2	0.23	V
tshort1		VDD=3.0V, V-=0V-1-V	2.4	4.8	9.6	
tshort2	- Short protection Delay Time	VDD=2.0V, V-=0V-1-V	1.4	2.8	5.6	ms
Vol1	Cout Nch Tr. ON Voltage	IOL=100µA, VDD=4.4V		0.17	0.5	V
Voh1	COUT Pch Tr. ON Voltage	IOH=-100µA, VDD=3.9V	3.4	3.73		V
Vol2	DOUT Nch Tr. ON Voltage	IOL=100µA, VDD=2.4V		0.17	0.5	v
Voh2	DOUT Pch Tr. ON Voltage	IOH=-100µA, VDD=3.9V	3.4	3.73		V
Idd	Supply Current	VDD=3.9V, V- =0V		2.3	5.0	μΑ
Istandby	Standby Current	VDD=2.4V, V-=2.4V		1.0	2.5	μΑ
Vchg	Charger Sense MinimumVoltage	VDD=2.9V		0.1	0.2	V
Rshort	V- pin pull down resistance	VDD=3.9V, V-=1.0V	65	130	260	kΩ


TYPICAL APPLICATION


PACKAGE DIMENSIONS (Unit: mm)

• 8pin SSOP (0.65mm pitch)

TAPING SPECIFICATION (Unit: mm)

• 8pin SSOP (0.65mm pitch)

NOTICE

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. This document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, computer equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire-containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

1995 June

RICOH COMPANY, LTD. ELECTRONIC DEVICES DIVISION HEADQUARTERS

13-1, Himemuro-cho, Ikeda City, Osaka 563-8501, JAPAN Phone 81-727-53-1111 Fax 81-727-53-6011

YOKOHAMA OFFICE (International Sales)

- JaPAN JAPAN
- Phone 81-45-477-1697 Fax 81-45-477-1694 1695 http://www.ricoh.co.jp/LSI/english/

RICOH CORPORATION ELECTRONIC DEVICES DIVISION

SAN JOSE OFFICE

3001 Orchard Parkway, San Jose, CA 95134-2088, U.S.A. Phone 1-408-432-8800 Fax 1-408-432-8375