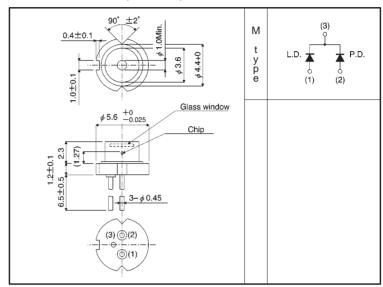
AlGaAs laser diodes RLD-78MC


The RLD-78MC is the world's first mass-produced laser diodes that is manufactured by molecular beam epitaxy. The characteristics of this laser diode are suitable for use in sensors and bar code readers.

ApplicationsSensorsBar code readersMeasuring instruments

Features

- 1) One-third the dispersion compared with conventional laser diodes.
- 2) High-precision, compact package.

External dimensions (Units: mm)

Note: The lengths of the RLD-78MC leads are 5.0 \pm 0.5 mm.

● Absolute maximum ratings (Tc = 25°C)

Parameter		Symbol	Limits	Unit
Output		Po	5	mW
Reverse voltage	Laser	VR	2	V
	PIN photodiode	VR (PIN)	30	V
Operating temperature		Topr	-10~ + 60	°C
Storage temperature		Tstg	-40~+85	°C

Laser diodes RLD-78MC

• Electrical and optical characteristics (Tc = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Threshold current	Ith	-	35	60	mA	_
Operating current	lop	-	45	70	mA	Po=3mW
Operating voltage	Vop	-	1.9	2.3	٧	Po=3mW
Differential efficiency	η	0.1	0.25	0.6	mW/mA	2mW I(3mW)—I(1mW)
Monitor current	lm	0.1	0.2	0.6	mA	Po=3mW,VR(PIN)=15V
Parallel divergence angle	θ //*	8	11	15	deg	Po=3mW
Perpendicular divergence angle	θ ⊥*	20	37	45	deg	
Parallel deviation angle	Δ φ //	_	_	±2	deg	
Perpendicular deviation angle	Δ φ ⊥	_	_	±3	deg	
Emission point accuracy	ΔX ΔΥ ΔΖ	_	_	±80	μm	-
Peak emission wavelength	λ	770	785	810	nm	Po=3mW

^{*} θ // and θ \perp are defined as the angle within which the intensity is 50% of the peak value.

Electrical and optical characteristic curves

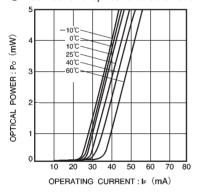


Fig. 1 Optical output vs. operating current

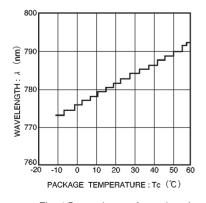


Fig. 4 Dependence of wavelength on temperature

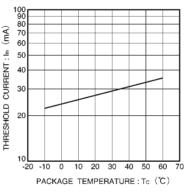


Fig. 2 Dependence of threshold current on temperature

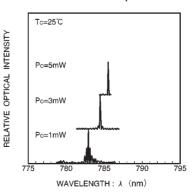


Fig. 5 Dependence of emission spectrum on optical output

Fig. 3 Far field pattern

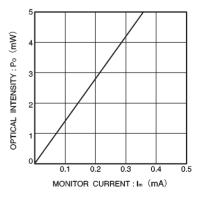


Fig. 6 Monitor current vs. optical output

