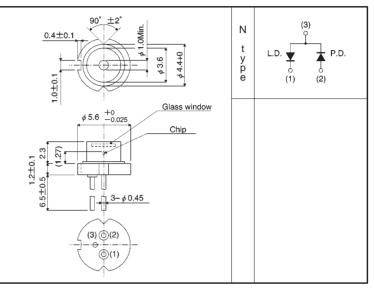
## AlGaAs laser diodes RLD-78NP10-B


The RLD-78NP10-B is one of the world's first mass-produced laser diodes that is manufactured by molecular beam epitaxy. The characteristics of this laser diode are suitable for high-speed laser beam printers.

Applications
Laser beam printers
High-speed laser beam printers

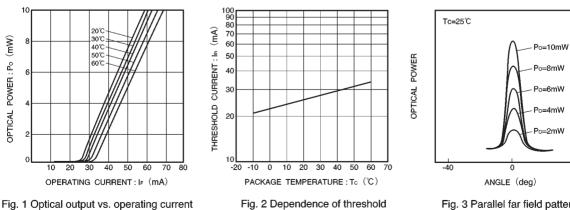
## Features

- 1) One-third dispersion compared with conventional laser diodes.
- 2) High-precision, compact package.
- 3) Low droop.
- Can be driven by single power supply (N type).

•External dimensions (Units: mm)



## Absolute maximum ratings (Tc = 25°C)


| Parameter             |                | Symbol   | Limits         | Unit |
|-----------------------|----------------|----------|----------------|------|
| Output                |                | Po       | 10             | mW   |
| Reverse<br>voltage    | Laser          | VR       | 2              | V    |
|                       | PIN photodiode | VR (PIN) | 30             | V    |
| Operating temperature |                | Topr     | $-10 \sim +60$ | °C   |
| Storage temperature   |                | Tstg     | $-40 \sim +85$ | Ĵ    |

| Parameter                         | Symbol              | Min. | Тур. | Max. | Unit  | Conditions           |  |
|-----------------------------------|---------------------|------|------|------|-------|----------------------|--|
| Threshold current                 | Ith                 | 15   | 25   | 45   | mA    | _                    |  |
| Operating current                 | lop                 | 25   | 45   | 65   | mA    | Po=6mW               |  |
| Operating voltage                 | Vop                 |      | 1.9  | 2.3  | V     | Po=6mW               |  |
| Differential efficiency           | η                   | 0.2  | 0.4  | 0.6  | wW/mA | 4mW<br>I(6mW)—I(2mW) |  |
| Monitor current                   | lm                  | 0.2  | 0.4  | 1.0  | mA    | Po=6mW               |  |
| Parallel divergence angle         | θ∥*                 | 8    | 11   | 15   | deg   |                      |  |
| Perpendicular<br>divergence angle | θ⊥*                 | 25   | 30   | 38   | deg   | Po=6m₩               |  |
| Parallel deviation angle          | Δθ∥                 | —    | _    | ±2   | deg   | -                    |  |
| Perpendicular deviation angle     | <b>Δ</b> <i>θ</i> ⊥ | _    | _    | ±3   | deg   |                      |  |
| Emission point accuracy           | ΔX<br>ΔY<br>ΔZ      | _    | _    | ±80  | μm    | _                    |  |
| Peak emission wavelength          | ٨                   | 770  | 785  | 795  | nm    | Po=6mW               |  |
| Droop                             | ΔP                  |      | 5    | 10   | %     | Po=6mW               |  |


•Electrical and optical characteristics (Tc =  $25^{\circ}$ C)

\*  $\theta$  // and  $\theta$   $\perp$  are defined as the angle within which the intensity is 50% of the peak value.

## Electrical and optical characteristic curves



current on temperature



Po=8mW

Po=6mW Po=4mW

Po=2mW

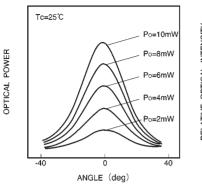



Fig. 4 Perpendicular far field pattern

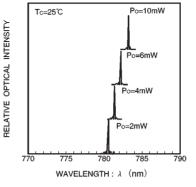
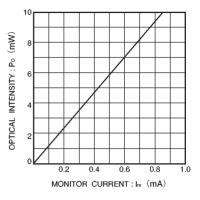




Fig. 5 Dependence of emission spectrum on optical output





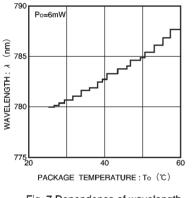



Fig. 7 Dependence of wavelength on temperature

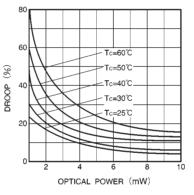



Fig. 8 Dependence of droop on output and temperature

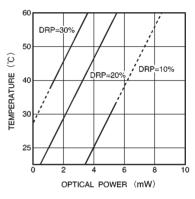



Fig. 9 Temperature vs. output guidelines for various droop percentages