
IRFN044SMD

MECHANICAL DATA

Pad 1 – Source

Pad 2 – Drain Pad 3 – Gate

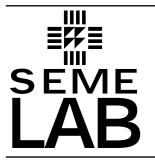
Note: IRFxxxSM also available with pins 1 and 3 reversed.

N-CHANNEL

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V _{GS}	Gate – Source Voltage	±20V	
I _D	Continuous Drain Current $(V_{GS} = 0, T_{case} = 25^{\circ}C)$	34A	
I _D	Continuous Drain Current $(V_{GS} = 0, T_{case} = 100^{\circ}C)$	21A	
I _{DM}	Pulsed Drain Current ¹	136A	
P _D	Power Dissipation @ $T_{case} = 25^{\circ}C$	75W	
	Linear Derating Factor	0.6W/°C	
E _{AS}	Single Pulse Avalanche Energy ²	340mJ	
dv/dt	Peak Diode Recovery ³	4.5V/ns	
T _J , T _{stg}	Operating and Storage Temperature Range	–55 to 150°C	
TL	Package Mounting Surface Temperature (for 5 sec)	300°C	
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	1.67°C/W	
$R_{\theta J-PCB}$	Thermal Resistance Junction to PCB (Typical)	4°C/W	

Notes


1) Pulse Test: Pulse Width \leq 300ms, δ \leq 2%

2) @ V_DD = 25V , L \geq 0.3mH , R_G = 25 Ω , Peak IL = 34A , Starting TJ = 25°C

3) @ I_{SD} \leq 34A , di/dt \leq 100A/µs , V_{DD} \leq BV_{DSS} , T_J \leq 150°C , SUGGESTED R_G = 9.1 Ω

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS		I		1		
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$ $I_D = 1$	mA 60			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C		0.68		V/°C	
ΔT_{J}	Breakdown Voltage	$I_D = 1mA$		0.00			
R _{DS(on)}	Static Drain – Source On–State	$V_{GS} = 10V$ $I_D = 2$	21A		0.040	Ω	
	Resistance ¹	$V_{GS} = 10V$ $I_D = 3$	34A		0.050		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 2$	250μΑ 2		4	V	
9 _{fs}	Forward Transconductance ¹	$V_{DS} \ge 15V$ $I_{DS} =$	21A 17			S(\)	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$ $V_{DS} =$	= 0.8BV _{DSS}		25	μΑ	
		$T_J = T_J$	125°C		250		
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V			100	~ ^	
I _{GSS}	Reverse Gate – Source Leakage	V _{GS} = -20V			-100	nA	
	DYNAMIC CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{GS} = 0$		2400		pF	
C _{oss}	Output Capacitance	V _{DS} = 25V		1100			
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		230		-	
Qg	Total Gate Charge ¹	$V_{GS} = 10V$ $I_D = 3$	34A		00		
		$V_{DS} = 0.5 BV_{DSS}$	39		88	nC	
Q _{gs}	Gate – Source Charge ¹	I _D = 34A	6.7		15		
Q _{gd}	Gate – Drain ("Miller") Charge ¹	$V_{DS} = 0.5 BV_{DSS}$	18		52	nC	
t _{d(on)}	Turn–On Delay Time	V 20V			23		
t _r	Rise Time	$V_{DD} = 30V$			130	- ns	
t _{d(off)}	Turn–Off Delay Time	$I_D = 34A$			81		
t _f	Fall Time	- R _G = 9.1Ω			79		
	SOURCE – DRAIN DIODE CHARAC	TERISTICS			I	1	
I _S	Continuous Source Current				34		
I _{SM}	Pulse Source Current ²				136	A	
V _{SD}	Diode Forward Voltage	$I_{\rm S} = 34$ $T_{\rm J} = 2$	25°C		0.5	V	
		$V_{GS} = 0$			2.5		
t _{rr}	Reverse Recovery Time	$I_F = 34A$ $T_J = 2$	25°C		220	ns	
Q _{rr}	Reverse Recovery Charge	d _i / d _t ≤ 100A/µs V _{DD} ≤	≤ 50V		1.6	μC	
t _{on}	Forward Turn-On Time			Negligible	!		
	PACKAGE CHARACTERISTICS						
L _D	Internal Drain Inductance (from centre of drain pad to die)			0.8		nH	
L _S	Internal Source Inductance (from centre of source pad to end of source bond wire)			2.8			
-		I		l			

Notes

1) Pulse Test: Pulse Width \leq 300ms, δ \leq 2%

2) Repetitive Rating - Pulse width limited by maximum junction temperature.