
SEME LAB

TOP VIEW

J Package – 8 Pin Ceramic DIP N Package – 8 Pin Plastic DIP D-8 Package – 8 Pin Plastic (150) SOIC

D-14 Package – 14 Pin Plastic (150) SOIC

CURRENT MODE REGULATING PULSE WIDTH MODULATORS

FEATURES

- Guaranteed ±1% reference voltage tolerance
- Guaranteed ±10% frequency tolerance
- Low start-up current (<500 μA)
- Under voltage lockout with hysteresis
- Output state completely defined for all supply and input conditions
- Interchangeable with UC1842 and UC1843 series for improved operation
- 500kHz operation

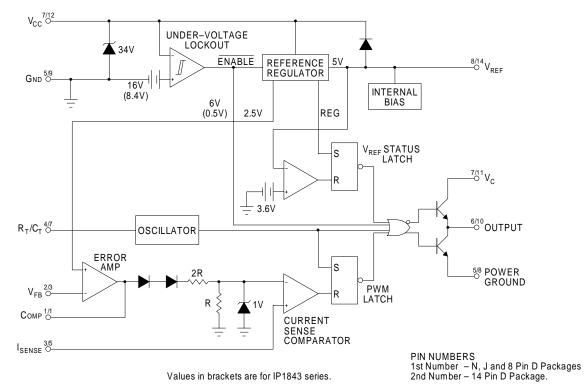
Part	J–Pack	N–Pack	D–8	D–14	Temp.	Note:						
Number	8 Pin	8 Pin	8 Pin	14 Pin	Range							
IP1842	 ✓ 				-55 to +125°C	To order, add the package identifier to the						
IP2842	 ✓ 	~	✓	~	-25 to +85°C	part number.						
IP3842	~	~	~	 ✓ 	0 to +70°C							
IP1843	 ✓ 				-55 to +125°C	eg. IP1842J						
IP2843	 ✓ 	~	✓	~	-25 to +85°C	IP3843D-14						
IP3843	~	~	✓	 ✓ 	0 to +70°C							

Order Information

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V _{CC}	Supply Voltage	(low impedance source) (I _{CC} < 30mA)	+30V Self limiting
0	Output Current		±1A
	Output Energy	(capacitive load)	5µJ
	Analog Inputs	(pins 2 and 3)	$-0.3V$ to $+V_{CC}$
	Error Amp Output Sink Curr	rent	10mA
D	Power Dissipation Derate @ T _{amb} > 50°C	T _{amb} = 25°C	1W 10mW/°C
Ъ	Power Dissipation Derate @ T _{case} > 25°C	$T_{case} = 25^{\circ}C$	2W 24mW/°C
Г _{STG}	Storage Temperature Rang	e	–65 to 150°C
Г <u>L</u>	Lead Temperature	(soldering, 10 seconds)	+300°C

Semelab plc.Telephone +44(0)1455 556565.Fax +44(0)1455 552612.E-mail: sales@semelab.co.ukWebsite: http://www.semelab.co.uk



DESCRIPTION

The IP1842 and IP1843 series of switching regulator control circuits contain all the functions necessary to implement off-line, current mode switching regulators, using a minimum number of external parts. Functions included are voltage reference, error amplifier, current sense comparator, oscillator, totem pole output driver and under-voltage lockout circuitry.

Although pin compatible with the UC1842 and 1843 series, SEMELAB has incorporated several improvements in the IP1842 and IP1843 series allowing tighter and more complete specification of electrical performance.

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS

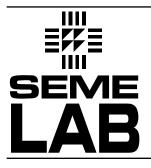
V _{CC}	Supply Voltage ¹		≤ 30V
I _O	Output Current		0 to ±200mA
	Analog Inputs (pins 2 and 3)		-0.3V to 3V
	Error Amp Output Sink Current		0 to 2mA
	Operating Ambient Temperature Range	IP1842 , IP1843 IP2842 , IP2843 IP3842 , IP3843	–55 to 125°C −25 to 85°C 0 to 70°C

Notes:

1. Lower limit set by under voltage lockout specification.

ELECTRICAL CHARACTERISTICS (Over Full Operating Temperature Range unless otherwise stated)

	Test Conditions		IP1842/IP1843 IP2842/IP2843			IP3842 IP3843			
Parameter			Min.	Тур.	Max.	Min.	Тур.	Max.	Units
	REFERENCE SEC	CTION	-						
Output Voltage	I _O = 1mA	T _J = 25°C	4.95	5.00	5.05	4.90	5.00	5.10	V
Input Regulation	V_{CC} = 12V to 25V			6	20		6	20	mV
Output Regulation	$I_0 = 1$ mA to 20mA			6	25		6	25	IIIV
Temperature Stability				0.2	0.4		0.2	0.4	mV °C
Total Output Variation	Line, Load, Temp		4.90		5.10	4.82		5.18	V
Output Noise Voltage	f = 10Hz to 10kHz	$T_J = 25^{\circ}C$		50			50		μV
Long Term Stability	T _J = 125°C @ 1000)Hrs		5	25		5	25	mV
Output Short Circuit Current	$V_{REF} = 0$		30	80	160	30	80	160	mA
	OSCILLATOR SE	CTION							
Frequency	$T_J = 25^{\circ}C$		47	52	57	47	52	57	kHz
Voltage stability	$V_{CC} = 12V$ to 25V			0.2	1		0.2	1	%
Temperature Stability	$\Delta T_A = Min \text{ to Max}$			5			5		%
Amplitude	V _{PIN4} Peak to Peak	(1.7			1.7		V
Discharge Current	$T_J = 25^{\circ}C$			8.3			8.3		mA
Discharge Current	$\Delta T_A = Min \text{ to Max}$		8			8		%	
	ERROR AMP SEC	CTION							
Input Voltage	V _{PIN1} = 2.5V		2.45	2.50	2.55	2.42	2.50	2.58	V
Input Bias Current				-0.3	-1		-0.3	-2	μA
Open Loop Voltage	$V_{O} = 2V$ to 4V		65	90		65	90		dB
Gain	V ₀ = 2V 10 4V		05	90		05	90		UD
Unity Gain Bandwidth			0.7	1		0.7	1		MHz
Supply Voltage Rejection	$V_{CC} = 12V$ to 25V		60	70		60	70		dB
Output Sink Current	V _{PIN2} = 2.7V	V _{PIN1} = 1.1V	2	6		2	6		
Output Source Current	$V_{\text{PIN2}} = 2.3V$	$V_{PIN1} = 1.1V$ $V_{PIN1} = 4.6V$	-0.5	-0.8		-0.5	-0.8		mA
V _{OUT} High	$V_{\text{PIN2}} = 2.3V$	$R_{\rm L} = 15 k\Omega$	4.6	4.8		4.6	4.8		
V _{OUT} Low	$V_{\text{PIN2}} = 2.7 \text{V}$	$R_L = 15k\Omega$	-	0.7	1.1	-	0.7	1.1	V
		-							


NOTES

1. Test Conditions unless otherwise stated:

 V_{CC} = 15V* , R_{T} = 10k Ω , C_{T} = 3.3nF , f = 52kHz.

*Adjust V_{CC} above start threshold before setting at required level.

All specifications apply over the full operating temperature range unless otherwise stated. (See Ordering Information for further details).

ELECTRICAL CHARACTERISTICS (Over Full Operating Temperature Range unless otherwise stated)

			IP1842/IP1843 IP2842/IP2843			IP3842 IP3843				
Parameter	Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Units	
	CURRENT SENSE	E SECTION								
Gain	See Notes 2,3		2.85	3	3.15	2.85	3	3.15	V/V	
Maximum Input Signal	$V_{PIN1} = 4.6V$	(Note 2)	0.9	1	1.1	0.9	1	1.1	V	
Supply Voltage	12)/ to 25)/		60	70		<u> </u>	70			
Rejection	$V_{\rm C} = 12 {\rm V} {\rm to} 25 {\rm V}$		60	70		60	70		dB	
Input Bias Current				-2	-10		-2	-10	μA	
Delay to Output				200	400		200	400	ns	
	OUTPUT SECTIO	N							•	
	I _{SINK} = 20mA			0.1	0.4		0.1	0.4		
Output Low Level	I _{SINK} = 200mA			1.5	2.2		1.5	2.2	- V	
Output Lligh Loval	I _{SOURCE} = 20mA		13	13.5		13	13.5			
Output High Level	I _{SOURCE} = 200mA		12	13.5		12	13.5		V	
Rise Time	$C_L = 1nF$	$T_J = 25^{\circ}C$		50	150		50	150		
Fall Time	$C_L = 1nF$	T _J = 25°C		50	150		50	150	ns	
UVLO Saturation	$V_{CC} = 6V$	I _L = 1mA		0.7	1.1		0.7	1.1	V	
	UNDER-VOLTAG	E LOCKOUT S	ECTION							
Upper Threshold	1842 Series		15	16	17	14.5	16	17.5	V	
(V _{CC})	1843 Series		7.8	8.4	9	7.8	8.4	9		
Lower Threshold	1842 Series		9	10	11	8.5	10	11.5		
(V _{CC})	1843 Series		7	7.6	8.2	7	7.6	8.2	- V	
	TOTAL STANDBY	CURRENT							•	
Start-up Current				0.3	0.5		0.3	0.5	mA	
Operating Supply	$V_{PIN2} = 0V$	1842 Series		11	15		11	15		
Current	$V_{PIN3} = 0V$	1843 Series		14	17		14	17	mA	
V _{CC} Zener Voltage	I _{CC} = 25mA		30	34	40	30	34	40	V	

1. Test Conditions unless otherwise stated:

V_{CC} = 15V* , R_{T} = 10k Ω , C_{T} = 3.3nF , f = 52kHz. *Adjust V_{CC} above start threshold before setting at required level.

NOTES

2. Parameter measured at trip point of latch with $V_{PIN2} = 0V$

ł

3. Gain defined as:

$$\begin{split} \mathsf{A} &= \frac{\Delta \mathsf{V}_{\mathsf{PIN1}}}{\Delta \mathsf{V}_{\mathsf{PIN3}}}\\ \mathsf{0} &\leq \mathsf{V}_{\mathsf{PIN3}} \leq 0.8 \end{split}$$

All specifications apply over the full operating temperature range unless otherwise stated. (See Ordering Information for further details).

APPLICATIONS INFORMATION

Oscillator Waveforms and Maximum Duty Cycle

8 V_{REF} 7 V_{CC}

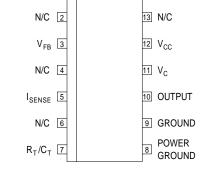
6 OUTPUT

5 GROUND

COMP 1

V_{FB} 2

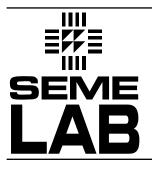
I_{SENSE} 3 R_T/C_T 4

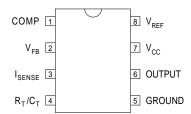

COMP 1

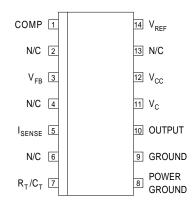
Oscillator timing capacitor C_T is charged by $V_{REF} \ t_c \approx 0.55 \ R_T C_T$ For $R_T > 5k\Omega$, through R_T and discharged by an internal current source. During the discharge time, the internal clock signal $t_d \approx R_T C_T \ln \left(\frac{.0063 R_T - 2.3}{.0063 - 4}\right)$ Resultant frequency $f \approx \frac{1.8}{(R_T C_T)}$ blanks the output to the low state. Selection of R_T and C_T therefore determines both oscillator frequency and Resultant frequency $f = \frac{1}{(t_c + t_d)}$ maximum duty cycle. Charge and discharge times are

Open–Loop Laboratory Test Fixture

14 V_{REF}


High peak current associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5K potentiometer are used to sample the oscillator wave form and apply an adjustable ramp to pin 3.




determined by the formulae:

IP1842 SERIES IP1843 SERIES

TYPICAL PERFORMANCE CHARACTERISTICS

