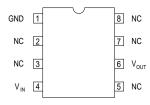


IP140MASERIESIP140MSERIESIP78M00ASERIESIP78M00SERIES



Pin 1 – V_{IN} Pin 2 – V_{OUT} Case – Ground

Pin 1 – V_{IN} Pin 2 – Ground Pin 3 – V_{OUT}

H Package – TO–39

SMD 1 CERAMIC SURFACE MOUNT

8 Pin J Package

Order Information

Part	rt H–Pack J–Pack SG–Pack									
Number	(TO–39)	CERDIP	SMD	Range						
IP78MxxAzz	P78MxxAzz V V									
IP78Mxxzz	~	~	~	"						
IP140MAzz-xx	~		~	"						
IP140Mzz–xx	~		~	"						
Note:										
xx = Voltage Code (05, 12, 15) zz = Package Code (H, J, SG)										
eg. IP78	M05J		IP140MAH-	12						

0.5 AMP POSITIVE VOLTAGE REGULATOR

FEATURES

- OUTPUT CURRENT UP TO 0.5A
- OUTPUT VOLTAGES OF 5, 12, 15V
- 0.01% / V LINE REGULATION
- 0.3% / A LOAD REGULATION
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSISTOR SOA PROTECTION
- 1% VOLTAGE TOLERANCE (-A VERSIONS)

DESCRIPTION

The IP140MA and IP78M00A series of voltage regulators are fixed output regulators intended for local, on-card voltage regulation. These devices are available in 5, 12, and 15 volt options and are capable of delivering in excess of 500mA over temperature.

The A-suffix devices are fully specified at 0.5A, provide 0.01% / V line regulation, 0.3% / A load regulation, and $\pm 1\%$ output voltage tolerance at room temperature. Protection features include safe operating area, current limiting and thermal shutdown.

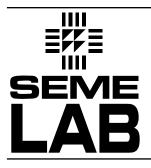
ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise stated)

VI	DC Input Voltage (for $V_0 = 5$	i, 12, 15V)	35V
PD	Power Dissipation		Internally limited 1
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	– H Package	20°C / W
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	– SG Package	TBA °C / W
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction to Ambien	t – J Package	119°C / W
Т _Ј	Operating Junction Temperature Range		–55 to 150°C
T _{stg}	Storage Temperature		–65 to 150°C

Note 1. Although power dissipation is internally limited, these specifications are applicable for maximum power dissipation P_{MAX} of 2W for the H–Package ,1.05W for the J–Package and 15W for the SG–Package.

IP140MASERIESIP140MSERIESIP78M00ASERIESIP78M00SERIES

ELECTRICAL CHARACTERISTICS


				IP78M05A		IP78M05				
D				IP140MA-05			IP140M-05			I
Parameter		Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
		I _O = 100mA	V _{IN} = 10V	4.95	5	5.05	4.8	5	5.2	
Vo	Output Voltage	I _O = 5mA to 350mA								v
•0	ouput ronago	$P_{D} \leq P_{MAX}$		4.85		5.15	4.75		5.25	
		$V_{IN} = 7.5V$ to 20V	$T_{J} = -55$ to $150^{\circ}C$							
			$V_{IN} = 7V$ to $25V$		3	10			50	
A \ /	Line Degulation	I _O = 200mA	$V_{IN} = 8V$ to 25V		2	10			25	
ΔV_O	Line Regulation		T _J = -55 to 150°C		3	10			25	mV
		I _O = 500mA	$V_{IN} = 8V$ to 12V		3	10			50	-
		I _O = 5mA to 500mA	ł						50	
ΔV_O	Load Regulation	V _{IN} = 10V	T _J = -55 to 150°C		5	50			50	mV
	Quiescent Current	V _{IN} = 10V	I _O = 350mA		4	6		4	6	mA
Ι _Q			T _J = -55 to 150°C							
		I _O = 5mA to 500mA	ł	0.1 0.5				0.5		
ΔI_Q	Quiescent Current Change	V _{IN} = 10V	T _J = -55 to 150°C		0.1	0.5			0.5	
		I _O = 200mA	$V_{IN} = 8V$ to 25V		0.2	0.8			0.0	mA
			T _J = -55 to 150°C		0.2	0.8			0.8	
V _N	Output Noise	f = 10Hz to 100kHz	7	40 200		40	200	μV		
	Voltage		-		40	200		-10	200	μν
ΔV_{IN}		f = 120Hz	I _O = 300mA	65	80		62			
$\frac{\Delta V_{IN}}{\Delta V_{O}}$	Ripple Rejection	$V_{IN} = 8V$ to 18V	I _O = 100mA	05	80	0	62			dB
Δv0		$v_{\rm IN} = 8V 10 18V$	T _J = -55 to 150°C	65	80		02			
	Dropout Voltage	I _O = 350mA			2	2.5			2.5	V
I _{sc}	Short Circuit Current	V _{IN} = 35V			300	600		300	600	mA
I _{pk}	Peak Output Current	V _{IN} = 10V		0.7	1.0	1.4	0.7	1.0	1.6	Α
Ave	Average Temperature			0.5	2.0		0.5		mV	
(Coefficient of V _O	I _O = 5mA			0.5	2.0		0.5		C

1) All characteristics are measured with a capacitor across the input of 0.22µF and a capacitor across the output of 0.1µF.

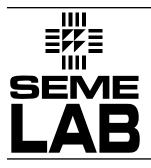
All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_p \le 10ms, \delta \le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

2) Test Conditions unless otherwise stated: $T_J = 25^{\circ}C$

$$\begin{split} &\mathsf{P}_{\mathsf{MAX}} = \mathsf{2W} \text{ for H Package (TO-39)} \\ &\mathsf{P}_{\mathsf{MAX}} = \mathsf{1.05W} \text{ for J Package (CERDIP)} \\ &\mathsf{P}_{\mathsf{MAX}} = \mathsf{15W} \text{ for SG Package (SMD1)} \end{split}$$

IP140MA SERIES IP140M SERIES IP78M00A SERIES IP78M00 SERIES

ELECTRICAL CHARACTERISTICS


				P78M12 140MA-		IF				
Parameter		Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
		I _O = 100mA	V _{IN} = 19V	11.88	12	12.12	11.50	12	12.50	
\ <i>\</i>	Output Valtage	I _O = 5mA to 350mA								
Vo	Output Voltage	$P_{D} \leq P_{MAX}$	$V_{IN} = 14.8V$ to 27V	11.64		12.36	11.40		12.60	V
		T _J = -55 to 150°C								
		I _O = 200mA	V _{IN} = 14.5V to 30V		4	18			60	
	Line Degulation		V _{IN} = 16V to 30V		4	40			20	-
ΔV_O	Line Regulation		T _J = -55 to 150°C		4	18			30	mV
		l _O = 500mA	V _{IN} = 16V to 22V		4	18			120	
A)/	Lead Devulation	$I_{O} = 5mA \text{ to } 500mA$	4	10 60				120	mV	
ΔV_O	Load Regulation	V _{IN} = 19V	T _J = -55 to 150°C					120		
1	Quiescent Current	V _{IN} = 19V	I _O = 350mA		4	6		4	6	mA
Ι _Q			T _J = -55 to 150°C							
		$I_{O} = 5mA \text{ to } 500mA$	4	0.1 0.5		0.5			0.5	
ΔI_Q	Quiescent Current Change	V _{IN} = 19V	T _J = -55 to 150°C		0.1	0.5			0.5	mA
		I _O = 200mA V _{IN} =	$V_{IN} = 14.8V$ to 30V		0.2	0.8			0.8	
			T _J = -55 to 150°C		0.2	0.0			0.0	
V_N	Output Noise	f = 10Hz to 100kHz	7		75	480		75	480	μV
	Voltage		_	75	400		75 400		μν	
ΔV_{IN}		f = 120Hz	I _O = 300mA	58	72		55			
$\frac{\Delta V_{IN}}{\Delta V_{O}}$	— Rinnie Relection	ipple Rejection $V_{IN} = 15V \text{ to } 25V$ $I_O = 100r$	I _O = 100mA	58 72	72	55			dB	
410		VIN - 100 to 200	T _J = -55 to 150°C	00	12					
	Dropout Voltage	l _O = 350mA			2	2.5			2.5	V
I _{sc}	Short Circuit Current	V _{IN} = 35V			300	600		300	600	mA
I _{pk}	Peak Output Current	V _{IN} = 19V		0.7	1.0	1.4	0.7	1.0	1.6	A
Average Temperature $I_{O} = 5mA$			1.2	4.8		1.2		mV		
	Coefficient of V _O				1.2	т.u		1.2		℃

1) All characteristics are measured with a capacitor across the input of 0.22µF and a capacitor across the output of 0.1µF.

All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_p \le 10ms, \delta \le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

2) Test Conditions unless otherwise stated: $T_J = 25^{\circ}C$

$$\begin{split} \mathsf{P}_{\mathsf{MAX}} &= 2\mathsf{W} \text{ for H Package (TO-39)} \\ \mathsf{P}_{\mathsf{MAX}} &= 1.05\mathsf{W} \text{ for J Package (CERDIP)} \\ \mathsf{P}_{\mathsf{MAX}} &= 15\mathsf{W} \text{ for SG Package (SMD1)} \end{split}$$

IP140MASERIESIP140MSERIESIP78M00ASERIESIP78M00SERIES

ELECTRICAL CHARACTERISTICS

				IP78M15A		IP78M15				
				IP140MA-15			IP140M–15			
Parameter		Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
		I _O = 100mA	V _{IN} = 23V	14.85	15	15.15	14.40	15	15.60	
Vo	Output Voltage	I _O = 5mA to 350mA								V
.0	e alpar i enage	$P_{D} \leq P_{MAX}$		14.55		15.45	14.25		15.75	
		$V_{IN} = 18V$ to 30V	T _J = -55 to 150°C							
			$V_{IN} = 17.5V \text{ to } 30V$		4	22			60	
AN/	Line Degulation	I _O = 200mA	$V_{IN} = 20V \text{ to } 30V$		4	22			20	/
ΔV_O	Line Regulation		T _J = -55 to 150°C		4	22			30	mV
		I _O = 500mA	$V_{IN} = 20V \text{ to } 26V$		4	22			150	
		I _O = 5mA to 500mA	۹		40 75					
ΔV_O	Load Regulation	V _{IN} = 23V	T _J = -55 to 150°C		12	75			150	mV
	Quiescent Current	V _{IN} = 23V	I _O = 350mA		4	6		4	6	
Ι _Q		T _J = -5	T _J = -55 to 150°C							mA
		I _O = 5mA to 500mA	Α		0.1	0.5			0.5	
ΔI_Q	Quiescent Current	V _{IN} = 23V	T _J = -55 to 150°C		0.1	0.5			0.5	mA
	Change	I _O = 200mA	$V_{IN} = 18V \text{ to } 30V$		0.2	0.8			0.0	
			T _J = -55 to 150°C		0.2	0.8			0.8	
V _N	Output Noise	f = 10Hz to 100kHz			90	600		90	600	μV
	Voltage		-		30	000	50		000	μv
ΔV_{IN}		f = 120Hz	I _O = 300mA	57	70		54			
$\frac{\Delta V_{IN}}{\Delta V_{O}}$	Ripple Rejection	V _{IN} = 18.5V to	I _O = 100mA	57	70	70	54			dB
ΔvO		28.5V	T _J = -55 to 150°C	57	70		54			
	Dropout Voltage	I _O = 350mA			2	2.5			2.5	V
I _{sc}	Short Circuit Current	V _{IN} = 35V			300	600		300	600	mA
I _{pk}	Peak Output Current	V _{IN} = 23V		0.7	1.0	1.4	0.7	1.0	1.6	Α
Ave	erage Temperature				1.5	F 0.0	4.5		mV	
(Coefficient of V _O	I _O = 5mA			1.5	6.0		1.5		C

1) All characteristics are measured with a capacitor across the input of 0.22µF and a capacitor across the output of 0.1µF.

All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_p \le 10ms, \delta \le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

2) Test Conditions unless otherwise stated: $T_J = 25^{\circ}C$

 $P_{MAX} = 2W$ for H Package (TO-39) $P_{MAX} = 1.05W$ for J Package (CERDIP)

 P_{MAX} = 15W for SG Package (SMD1)