EIIII
IIII
LT1085LCC4

MILITARY VERSION

MECHANICAL DATA
Dimensions in mm (inches)

CERAMIC SURFACE MOUNT LOW DROPOUT POSITIVE ADJUSTABLE VOLTAGE REGULATOR FOR HI-REL APPLICATIONS

Pads 5,4 = adjust
Pads $6,7,8,9,10,11,13=$ Vin

FEATURES

- Ceramic Surface Mount Hermetic Package
- Low Dropout Performance
- Output Current 3A
- Line Regulation 0.015\% / V Typical.
- Load Regulation 0.1\% Typical.
- Full Temperature Range (-55 to $+150^{\circ} \mathrm{C}$)

BLOCK DIAGRAM

Pads 1,2,15,16,17,18 = Vout

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}\right.$ unless otherwise stated)

$\mathrm{V}_{\text {I-O }}$	Input-Output Differential Voltage	
P_{D}	Power Dissipation	
V_{IN}	Operating Input Voltage	Internally limited
T_{J}	Operating Junction Temperature Range	25 V
		Control
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-55 to $150^{\circ} \mathrm{C}$
$\theta_{\text {JC }}$	Thermal Resistance (junction to case)	-55 to $200^{\circ} \mathrm{C}$

* Although the devices' maximum operating voltage is limited to 25 V the devices are guaranteed to withstand transient input voltages up to 30 V . For input voltages greater than the maximum operating input voltage, some degradation of specifications will occur.

LT1085LCC4

MILITARY VERSION

DESCRIPTION

The LT1085 is designed to provide 3A with higher efficiency than currently available devices．All internal circuitry is designed to operate down to 1 V input to output differential and the dropout voltage is fully specified as a function of load current．Dropout is guaranteed at a maximum of 1.5 V at maximum output current，decreasing at lower load currents．On－ chip trimming adjusts the reference output voltage to 1% ．Current limit is also trimmed，minimising the stress on both the regulator and power source circuitry under overload conditions．

ELECTRICAL CHARACTERISTICS（Pre Irradiation）（ $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise stated）

Parameter	Test Conditions	Min．	Typ．	Max．	Unit
	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=3 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	1.238	1.250	1.252	
$\mathrm{V}_{\text {REF }} \quad$ Reference Voltage	$\begin{aligned} \mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}=1.5 \text { to } 15 \mathrm{~V} \mathrm{I}_{\mathrm{O}} & =10 \mathrm{~mA} \text { to } 3 \mathrm{~A} \\ \mathrm{~T}_{J} & =-55 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	1.225	1.25	1.270	V
REG（LINE）${ }^{\text {Line }}$ Regulation	$\begin{array}{rr} \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} & \left(\mathrm{~V}_{\left.\mathrm{IN}-\mathrm{V}_{\text {OUT }}\right)=1.5 \text { to } 15 \mathrm{~V}}\right. \\ \mathrm{T}_{J}=-55 \text { to } 125^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} & \left(\mathrm{~V}_{\text {IN } \left.-\mathrm{V}_{\text {OUT }}\right)=15 \text { to } 30 \mathrm{~V}}\right. \\ \mathrm{T}_{J}=-55 \text { to } 125^{\circ} \mathrm{C} \end{array}$		0.015	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	\％
$\begin{array}{ll} \text { REG }_{\text {(LOAD) }} & \text { Load Regulation } \\ & \text { See notes } 1,2 \end{array}$	$\begin{array}{ll} \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=3 \mathrm{~V} & \\ \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \text { to } 3 \mathrm{~A} & \mathrm{~T}_{J}=-55 \text { to } 125^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	\％
V_{D} Dropout Voltage See note 3	$\begin{array}{ll} \Delta \mathrm{V}_{\text {REF }}=1 \% & \\ \mathrm{l}_{\mathrm{OUT}}=3 \mathrm{~A} & \mathrm{~T}_{J}=-55 \text { to } 125^{\circ} \mathrm{C} \end{array}$		1.3	1.5	V
$\mathrm{I}_{\text {cL }} \quad$ Current Limit	$\begin{array}{ll} \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V} & \mathrm{~T}_{J}=-55 \text { to } 125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=25 \mathrm{~V} & \mathrm{~T}_{\mathrm{J}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 3.2 \\ & 0.2 \end{aligned}$	$\begin{gathered} 4 \\ 0.5 \end{gathered}$		A
$\begin{array}{ll}\text { IQ } & \begin{array}{l}\text { Quiescent Current } \\ \text { Minimum Load Current } 4\end{array}\end{array}$	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V} \quad \mathrm{~T}_{J}=-55$ to $125^{\circ} \mathrm{C}$		5	10	mA
REG ${ }_{\text {（THERM }}$ ）Thermal Regulation	$\mathrm{T}_{\mathrm{P}}=30 \mathrm{~ms} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.004	0.02	\％／W
$\mathrm{R}_{\mathrm{A}} \quad$ Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$ $\mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}$ $\mathrm{l}=3 \mathrm{~A}$ $\mathrm{C}_{\text {ADJ }}=25 \mu \mathrm{~F}$	60	75		dB
IPIN Adjust Pin Current	$\mathrm{T}_{J}=-55$ to $125^{\circ} \mathrm{C}$		55	120	$\mu \mathrm{A}$
$\triangle^{\text {PIN }}$ Adjust Pin Current Change	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}=1.5 \text { to } 15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \text { to } 3 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$		0.2	5	$\mu \mathrm{A}$
TS Temperature Stability	$\mathrm{T}_{\mathrm{J}}=-55$ to $125^{\circ} \mathrm{C}$		0.5		\％
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \quad \mathrm{T}=1000 \mathrm{Hrs}$		0.3		\％
$\mathrm{V}_{\mathrm{N}} \quad$ RMS Output Noise	$\mathrm{f}=10 \mathrm{~Hz}$ to $10 \mathrm{kHz} \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.003		\％

Notes：

1 Load and line regulation are measured at a constant junction temperature by low duty cycle pulse testing．
2 Power dissipation is determined by the input－output differential and the output current．Guaranteed maximum power dissipation will not be available over the full input－output voltage range．
3 Dropout voltage is specified over the full output current range of the device．

