osames

 METERING IC WITH PULSE OUTPUT
FEATURES

- Performs unidirectional one, two or three phase power and energy measurement
- Meets the IEC 521/1036 Specification requirements for Class 1 AC Watt hour meters
- Operates over a wide temperature Range
- Uses current transformers for current sensing

DESCRIPTION

The SAMES SA9105A Three Phase unidirectional Power/Energy metering integrated circuit generates a pulse rate output, the frequency of which is proportional to the power consumption. The SA9105A performs the calculations of active power.
The method of calculation takes the power factor into account.
Energy consumption is determined by the power measurement being integrated over time.
The output of this innovative universal three phase power/energy metering integrated circuit, is ideally suited for applications such as residential and industrial energy metering and control.
The SA9105A integrated circuit is available in 40 pin dual-in-line plastic (DIP-40), as well as in 44 pin plastic leaded chip carrier (PLCC-44) packages types.

- Excellent long term stability
- Easily adaptable to different signal levels
- Precision voltage reference on-chip
- Three pulse rate outputs available
- Protected against ESD

PIN CONNECTIONS

Package: DIP-40

PIN CONNECTIONS

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS *

Parameter	Symbol	Min	Max	Unit
Supply Voltage	$\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}$	-0.3	6.0	V
Current on any Pin	$\mathrm{I}_{\mathrm{PIN}}$	-150	+150	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40	+125	${ }^{\circ} \mathrm{C}$
Operating Temperature	T_{O}	-40	+85	${ }^{\circ} \mathrm{C}$

* Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification, is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Over the temperature range $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}^{\#}$, unless otherwise specified.)

Parameter	Symbol	Min	Typ	Max	Unit	Condition
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$	4.5		5.5	V	
Supply Current	$\mathrm{I}_{\text {D }}$			15	mA	
Nonlinearity of Power Calculation		-0.3		+0.3	\%	$1 \%-100 \% \text { of }$ rated power
Current Sensor Inputs (Differential)						
Input Current Range	$\mathrm{I}_{\text {II }}$	-25		+25	$\mu \mathrm{A}$	Peak value
Voltage Sensor Inputs (Asymmetric)						
Input Current Range	$\mathrm{I}_{\text {IV }}$	-25		+25	$\mu \mathrm{A}$	Peak value
Pins FOUT1,FOUT2,FOUT3 Output Low Voltage Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-1}$		$\mathrm{V}_{\text {ss }}+1$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$
Pulse Rate: $\begin{array}{ll}\text { FOUT1 } \\ & \text { FOUT2 } \\ & \text { FOUT3 }\end{array}$	f_{p}	$\begin{aligned} & 10 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 1160 \\ & 3000 \end{aligned}$	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$	Specified linearity Min and max limits
	$\mathrm{f}_{\mathrm{p} 2}$		$\mathrm{f}_{\mathrm{p}} / 4$			
	$\mathrm{f}_{\mathrm{p} 3}$		$\mathrm{f}_{\mathrm{p}} / 290$			
Oscillator	Recommended crystal: TV colour burst crystal, $f=3.5795 \mathrm{MHz}$					
Pin VREF Ref. Current Ref. Voltage	$\begin{aligned} & -I_{R} \\ & V_{R} \end{aligned}$	$\begin{aligned} & 45 \\ & 1.1 \end{aligned}$	50	$\begin{aligned} & 55 \\ & 1.3 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~V} \end{gathered}$	$\begin{array}{\|l} \hline \text { With } \mathrm{R}=24 \mathrm{k} \Omega \\ \text { connected to } \mathrm{V}_{\mathrm{ss}} \\ \text { Referred to } \mathrm{V}_{\mathrm{ss}} \\ \hline \end{array}$

[^0]SA9105A

PIN DESCRIPTION

$\begin{gathered} \text { Pin } \\ \text { PLCC } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Pin } \\ & \text { DIP } \\ & \hline \end{aligned}$	Designation	Description
6	35	GND	Ground
42	28	$V_{\text {D }}$	Positive Supply Voltage
29	16	$\mathrm{V}_{\text {ss }}$	Negative Suply Voltage
5	34	IVP1	Analog Input for Voltage: Phase 1 Analog Input for Voltage: Phase 2 Analog Input for Voltage: Phase 3
4	33	IVP2	
3	32	IVP3	
18	6	IIN1	Inputs for current sensor: Phase 1
19	7	IIP1	
20	8	IIN2	Inputs for current sensor: Phase 2
21	9	IIP2	
22	10	IIN3	Inputs for current sensor: Phase 3
23	11	IIP3	
32	19	OSC1	Connections for crystal or ceramic resonator (OSC1 = Input ; OSC2 = Output)
33	20	OSC2	
35	21	FOUT1	Pulse rate outputs
36	22	FOUT2	
37	23	FOUT3	
9	38	CON1	Connections for outer loop capacitors of A/D converters
10	39	COP1	
8	37	CON2	
7	36	COP2	
1	30	CON3	
2	31	COP3	
26	13	CONP	
25	12	COPP	
13	1	CIN1	Connections for inner loop capacitors of A/D converters
11	40	CIP1	
15	3	CIN2	
14	2	CIP2	
17	5	CIN3	
16	4	CIP3	
28	15	CINP	
27	14	CIPP	
43	29	VREF	Connection for current setting resistor
30	17	TP17	Manufacturer's Test Pins (Leave unconnected)
31	18	TP18	
38	24	TP24	
39	25	TP25	
40	26	TP26	
41	27	TP27	

PIN DESCRIPTION (Continued)

Pin PLCC	Pin DIP	Designation	Description
12		NC	Not connected
24		NC	
34		NC	
44		NC	

FUNCTIONAL DESCRIPTION

The SAMES SA9105A is a CMOS mixed signal Analog/Digital integrated circuit, which performs three phase power/energy calculations over a range of 1000:1, to an overall accuracy of better than Class 1.
The integrated circuit includes all the required functions for 3-phase power and energy measurement such as oversampling A/D converters for the voltage and current sense inputs, power calculation and energy integration. Internal offsets are eliminated through the use of cancellation procedures.
The SA9105A generates pulses, the frequency of which is proportional to the power consumption. Three frequency outputs (FOUT1, FOUT2 and FOUT3) are available.

1. Power Calculation

In the Application Circuit (Figure 1), the mains voltages from Line 1, Line 2 and Line 3, are converted to currents and applied to the voltage sense inputs IVP1, IVP2 and IVP3.

The current levels on the voltage sense inputs are derived from the mains voltage ($3 \times 230 \mathrm{VAC}$) being divided down through voltage dividers to 14 V . The resulting input currents into the A / D converters are $14 \mu A$ through the resistors R_{15}, R_{16} and R_{17}.
For the current sense inputs the voltage drop across the current transformers terminating resistors are converted to currents of $16 \mu \mathrm{~A}$ for rated conditions, by means of resistors R_{8}, R_{9} (Phase 1); R_{10}, R_{11} (Phase 2) and R_{12}, R_{13} (Phase 3).
The signals providing the current information are applied to the current sensor inputs IIN1, IIP1; IIN2, IIP2 and IIN3, IIP3.
In this configuration, with the mains voltage of $3 \times 230 \mathrm{~V}$ and rated currents of 80A, the output frequency of the SA9105A energy metering integrated circuit at FOUT1 is 1.16 kHz . In this case 1 pulse will correspond to an energy consumption of 3×18.4 $\mathrm{kW} / 1160 \mathrm{~Hz}=47.6 \mathrm{Ws}$.

The output frequency at FOUT2 is FOUT1/4. At FOUT3 the output frequency is FOUT1/290.

2. Analog Input Configuration

The current and voltage sensor inputs are illustrated below.
These inputs are protected against electrostatic discharge through clamping diodes, in conjunction with the amplifiers input configuration.

The feedback loops from the outputs of the amplifiers A_{1} and A_{v} generate virtual shorts on the signal inputs. Exact duplications of the input currents are generated for the analog processing circuitry

3. Electrostatic Discharge (ESD) Protection

The SA9105A integrated circuit's inputs/outputs are protected against ESD according to Mil-Std 883 method 3015. The SA9105A integrated circuit's resistance to transients is also dependant upon the external protection components used.

4. Power Consumption

The overall power consumption rating of the SA9105A integrated circuit is less than 75 mW with a 5 V supply.

TYPICAL APPLICATION

In the Application Circuit (Figure 1), the components required for a three phase power metering application are shown. Terminated current transformers are used for current sensing.
The most important external components for the SA9105A integrated circuit are:
$\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{10}$ and C_{11} are the outer loop capacitors for the integrated oversampling A / D converters. The typical value of C_{7} is $2.2 n F$ and the value of C_{9}, C_{10} and C_{11} is 560pF.
The actual values determine the signal to noise and stability performance. The tolerances should be within $\pm 10 \%$.
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$ and C_{8} are the inner loop capacitors for the integrated oversampling A/D converters. The typical value of $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$ and C_{8} is 3.3 nF . Values smaller than 0.5 nF and larger than 5 nF should be avoided.
Terminated current sensors (current transformers) are connected to the current sensor inputs of the SA9105A through current setting resistors ($\mathrm{R}_{8} . . \mathrm{R}_{13}$).
The resistor values should be selected for an input current of $16 \mu \mathrm{~A}$ into the SA9105A at the rated line current.
The values of these resistors should be calculated as follows:
Phase 1:
$R_{8}=R_{9}=\left(I_{L 1} / 16 \mu A\right) * R_{18} / 2$

Phase 2:

$R_{10}=R_{11}=\left(\mathrm{I}_{\mathrm{L} 2} / 16 \mu \mathrm{~A}\right){ }^{*} \mathrm{R}_{19} / 2$
Phase 3:
$R_{12}=R_{13}=\left(I_{L 3} / 16 \mu A\right) * R_{20} / 2$
Where $\mathrm{I}_{\mathrm{LX}} \quad=$ Secondary CT current at rated conditions.
R_{18}, R_{19} and $R_{20}=$ Current transformer termination resistors for the three phases.
$R_{1}+R_{1 A}, R_{4}$ and R_{15} set the current for the phase 1 voltage sense input. $R_{2}+R_{2 A}, R_{5}+$
P_{5} and R_{16} set the current for phase 2 and $R_{3}+R_{3 A}, R_{6}+P_{6}$ and R_{17} set the current for phase
3. The values should be selected so that the input current into the voltage sense inputs (virtual ground) are set to $14 \mu \mathrm{~A}$ for nominal line voltage. Capacitors $\mathrm{C} 1, \mathrm{C} 2$ and C 3 are for decoupling and phase compensation.
$R_{14}+P_{14}$ defines all on-chip bias and reference currents. With $R_{14}+P_{14}=24 \mathrm{k} \Omega$, optimum conditions are set. R_{14} may be varied within $\pm 10 \%$ for calibration purposes. Any changes to R_{14} will affect the output quadratically (i.e: $\Delta R=+5 \%, \Delta f=+10 \%$).

The formula for calculating the Output Frequency (f) is given below:
$f=11.16 *$ FOUTX $* \frac{\text { FOSC }}{3.58 \mathrm{MHz}} * \frac{\left(I_{11} I_{V_{1}}\right)+\left(I_{12} I_{V_{2}}\right)+\left(I_{13} I_{V_{3}}\right)}{3 * I_{R}{ }^{2}}$
Where FOUTX = Nominal rated frequency ($4 \mathrm{~Hz}, 290 \mathrm{~Hz}$ or 1160 Hz)
FOSC = Oscillator frequency (2 MHz 4 MHz)
$I_{11}, I_{12}, I_{13}=$ Input currents for current inputs ($16 \mu \mathrm{~A}$ at rated)
$I_{\mathrm{V}_{1}}, \mathrm{I}_{\mathrm{V} 2}, I_{\mathrm{V} 3}=$ Input currents for voltage inputs $(14 \mu \mathrm{~A}$ at rated $)$
$\mathrm{I}_{\mathrm{R}} \quad=$ Reference current (typically $50 \mu \mathrm{~A}$)
XTAL is a colour burst TV crystal ($\mathrm{f}=3.5795 \mathrm{MHz}$) for the oscillator. The oscillator frequency is divided down to 1.7897 MHz on-chip, to supply the digital circuitry and the A/D converters.

Figure 1: Application Circuit for Three Phase Power/Energy Measurement.

Parts List for Application Circuit: Figure 1

Item	Symbol	Description	Detail
1	IC-1	Integrated SA9105A	DIP-40/PLCC-44
2	XTAL	Crystal, 3.5795 MHz	Colour burst TV
3	R1	Resistor, 200k, 1\%, 1/4W	
4	R1A	Resistor, 180k, 1\%, 114W	
5	R2	Resistor, 200k, 1\%, 1/4W	
6	R2A	Resistor, 200k, 1\%, 1/4W	
7	R3	Resistor, 200k, 1\%, 1/4W	
8	R3A	Resistor, 180k, 1\%, 1/4W	
9	R4	Resistor, 24k, 1\%, 1/4W	
10	R5	Resistor, 22k, 1\%, 1/4W	
11	R6	Resistor, 22k, 1\%, 1/4W	
12	R7	Resistor, $820 \Omega, 1 \%, 1 / 4 \mathrm{~W}$	
13	R8	Resistor	Note 1
14	R9	Resistor	Note 1
15	R10	Resistor	Note 1
16	R11	Resistor	Note 1
17	R12	Resistor	Note 1
18	R13	Resistor	Note 1
19	R14	Resistor, 22k, 1\%, 1/4W	
20	R15	Resistor, 1M, 1\%, 1/4 W	
21	R16	Resistor, 1M, 1\%, 1/4/ W	
22	R17	Resistor, 1M, 1\%, 1/4W	
23	R18	Resistor	Note 1
24	R19	Resistor	Note 1
25	R20	Resistor	Note 1
26	R21	Resistor, 820Ω, 1\%, 1/4W	
27	P5	Potentiometer, 4.7k	Multi turn
28	P6	Potentiometer, 4.7k	Multi turn
29	P14	Potentiometer, 4.7k	Multi turn
30	C1	Capacitor, electrolytic, $1 \mu \mathrm{~F}, 16 \mathrm{~V}$	Note 2
31	C2	Capacitor, electrolytic, $1 \mu \mathrm{~F}, 16 \mathrm{~V}$	Note 2
32	C3	Capacitor, electrolytic, $1 \mu \mathrm{~F}, 16 \mathrm{~V}$	Note 2
33	C4	Capacitor, 3.3nF	
34	C5	Capacitor, 3.3nF	
35	C6	Capacitor, 3.3nF	
36	C7	Capacitor, 2.2nF	
37	C8	Capacitor, 3.3nF	
38	C9	Capacitor, 560pF	
39	C10	Capacitor, 560pF	
40	C11	Capacitor, 560pF	

Parts List for Application Circuit: Figure 1 (Continued)

Item	Symbol	Description	Detail
41	C12	Capacitor, 820nF	Note 3
42	C13	Capacitor, 100nF	
43	C14	Capacitor, 100nF	

Note 1: Resistor ($R_{8}, R_{9}, R_{10}, R_{11}, R_{12}$ and R_{13}) values are dependant upon the selected values of the current transformer termination resistors R_{18}, R_{19} and R_{20}.
Note 2: Capacitor values may be selected to compensate for phase errors caused by the current transformers.
Note 3: Capacitor (C12) to be positioned as close to Supply Pins ($\mathrm{V}_{\mathrm{DD}} \& \mathrm{~V}_{\mathrm{SS}}$) of IC-1, as possible.

ORDERING INFORMATION

Part Number	Package
SA9105APA	DIP-40
SA9105AFA	PLCC-44

Disclaimer: The information contained in this document is confidential and proprietary to South African MicroElectronic Systems (Pty) Ltd ("SAMES") and may not be copied or disclosed to a third party, in whole or in part, without the express written consent of SAMES. The information contained herein is current as of the date of publication; however, delivery of this document shall not under any circumstances create any implication that the information contained herein is correct as of any time subsequent to such date. SAMES does not undertake to inform any recipient of this document of any changes in the information contained herein, and SAMES expressly reserves the right to make changes in such information, without notification, even if such changes would render information contained herein inaccurate or incomplete. SAMES makes no representation or warranty that any circuit designed by reference to the information contained herein, will function without errors and as intended by the designer.

Any Sales or technical questions may be posted to our e-mail address below: energy@sames.co.za

For the latest updates on datasheets, please visit out web site:
http://www.sames.co.za

South African Micro-Electronic Systems (Pty) Ltd	
P O Box 15888,	33 Eland Street,
Lynn East,	Koedoespoort Industrial Area,
0039	Pretoria,
Republic of South Africa,	Republic of South Africa

Tel: 012 333-6021
Tel: Int +27 12 333-6021
Fax: 012 333-8071
Fax: Int +27 12 333-8071

[^0]: \# Extended Operating Temperature Range available on request.

