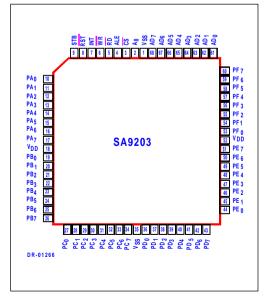


6/3 X 8 PORT EXPANDER

FEATURES

- Six (SA9203) or three (SA9205) 8-Bit I/O Ports
- Each bit of one port independently programmable as input or output
- Five (SA9203) or two (SA9205) remaining ports can be individually configured as input or output. (Direction applicable to all 8 pins of each port.)
- One 8-Bit port programmable as either atched or transparent inputs
- Supports byte-wide and bit-wide I/O port addressing modes on all ports


- Readback of all control and port registers
- Interfaces directly with multiplexed address and data bus microprocessors/ microcontrollers
- Internal address latch
- Single +5V power supply
- Low power CMOS
- Completely static operation
- TTL-level compatibility

DESCRIPTION

The SAMES SA9203/5 Port Expander is a CMOS device suited to microprocessor based applications requiring input/output port expansion. The device interfaces very simply to any microcontroller/microprocessor with a multiplexed address/data bus structure.

The SA9203 includes 8 independently programmable I/O pins for Port A and Port B to F (5 ports) independently programmable as I/O. It is packaged in a PCB efficient 68 pin PLCC package. The SA9205 includes 8 independently programmable I/O pins for Port A with Port B and Port C as independently programmable I/O, packaged in a cost effective 44 pin PLCC package.

FIGURE 1: PIN CONNECTION FOR SA9203

1/14

4491 PDS039-SA9203/5-001 REV. A 20-08-96

FIGURE 2: BLOCK DIAGRAM FOR SA9203

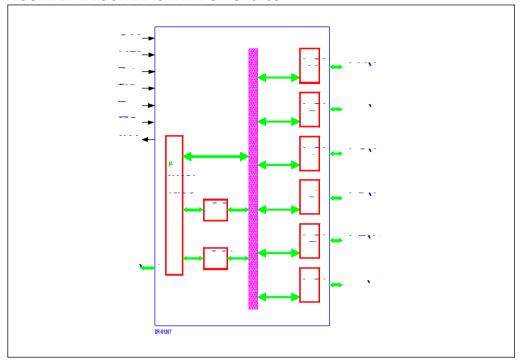
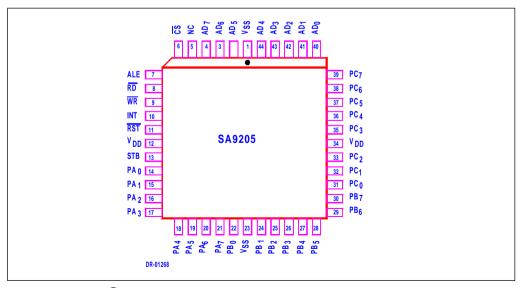



FIGURE 3: PIN CONNECTION FOR SA9205

(D)

2/14

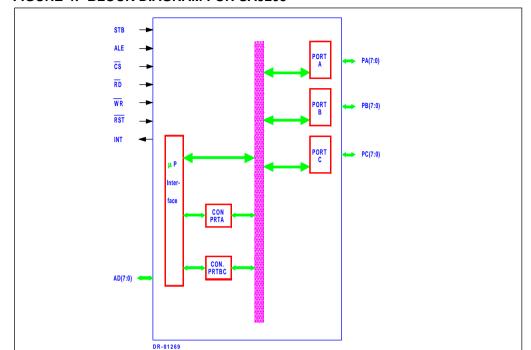


FIGURE 4: BLOCK DIAGRAM FOR SA9205

ABSOLUTE MAXIMUM RATINGS*

(All voltages are with respect to VSS)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{DD} -V _{SS}	V _{ss}	7,0	٧
Voltage on any pin	V _M	V _{ss} -0.3	V _{DD} +0.3	V
Current at any pin	I _M		100	mA
Storage Temperature	T _{STG}	-40	+125	°C
Operating Temperature	T _o	0	+70	°C

^{*} Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other condition above those indicated in the operational sections of this specification, is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(All measurements with respect to VSS, at 25°C, unless otherwise specified)

Parameters	Symbol	Min	Тур	Max	Unit	Condition
Supply Voltage	V _{DD}	4.75	5.0	5.25	V	
Static Current	I _{DDS}		15	50	μA	VDD = 5.0V
						(See Note1)
Dynamic Current	I _{DDD}			20	mA	VDD = 5.0V
Input High Voltage	V _{IH}	2.0			V	VDD = 5.0V
Input Low Voltage	V _{IL}			1.0	V	VDD = 5.0V
Output High Voltage	V _{OH}	4.5	4.7		V	VDD = 5.0V
						$I_{OH} = 5mA$
Output Low Voltage	V _{OL}		0.25	0.5	V	VDD = 5.0V
						$I_{OH} = 5mA$
Input Leakage Current	I _{IN}		<1.0	3.0	μΑ	VDD = 5.0V
Tristate Leakage Current	I _{TL}		<1.0	3.0	μA	VDD = 5.0V

Note 1: All inputs tied to VDD or VSS with outputs not loaded.

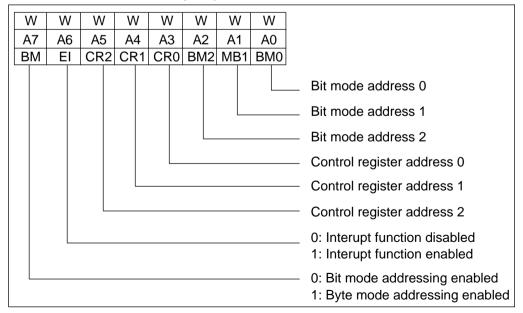
Measurements made after RST applied.

PIN DESCRIPTION for SA9203

Pin	Type	Designation	Description
18,52		VDD	+5V Supply Input
1,35		VSS	0V ground Reference
6168	I/O	AD0AD7	3-state address/data lines that interface with the CPU lower 8-bit address/data bus. The 8-bit address is latched into the SA9203 internal address latch on the falling edge of ALE. The 8-bit data is <u>respectively</u> written into and read out of the SA9203 on WR and RD signals.
2		N/C	Not connected.
3	ı	CS	Active low input signal used to select the device.
4	I	ALE	This control signal latches the address on the AD07 lines on the falling edge of ALE.
5	I	RD	Input low on this line enables the data bus buffers.
6	I	WR	Input low on this line causes the data on the address/ data bus to be written to the I/O ports and, control registers.
7	0	INT	If enabled via A.6, this output will be set (active edge polarity programmed by D6 and output polarity programmed via D7 of the Port B-F direction control register) after data has been latched into PORT A.
8	I	RST	Input low on this line resets the chip and all internal registers and all ports to input mode (The register contents after a reset pulse will be described later).
9	Ι	STB	Input data on PORT A pins will be latched when STB is active and transparent otherwise (polarity programmed by D5 of the Port B-F direction control register)
1017	I/O	PA0PA7	8 general purpose I/O pins comprising PORT A. This port supports individual input or latched output configuration of each pin. In addition, each pin of PORT A selected as an input can be programmed to be latched or transparent.
1926	I/O	PB0PB7	8 general purpose I/O pins comprising PORT B. All 8 pins are programmed to be either latched outputs or transparent inputs.
2734	I/O	PC0PC7	Identical to PORT B
3643	I/O	PD0PD7	Identical to PORT B
4451	I/O	PE0PE7	Identical to PORT B
5360	I/O	PF0PF7	Identical to PORT B

PIN DESCRIPTION for SA9205

Pin	Туре	Designation	Description
2,35		VDD	+5V Supply Input
1,23		VSS	0V ground Reference
4044	I/O	AD0AD7	3-state address/data lines that interface with the CPU lower 8-bit address/data bus. The 8-bit address is latched into the SA9203 internal address latch on the falling edge of ALE. The 8-bit data is respectively written into and read out of the SA9203 on WR and RD signals.
5		N/C	Not connected.
6	I	CS	Active low input signal used to select the device.
7	I	ALE	This control signal latches the address on the AD07 lines on the falling edge of ALE.
8	I	RD	Input low on this line enables the data bus buffers.
9	I	WR	Input low on this line causes the data on the address/data bus to be written to the I/O ports and, control registers.
10	0	INT	If enabled via A.6, this output will be set (active edge polarity programmed by D6 and output polarity programmed via D7 of the Port B-F direction control register) after data has been latched into PORT A.
11	I	RST	Input low on this line resets the chip and all internal registers and all ports to input mode (The register contents after a reset pulse will be described later).
13	I	STB	Input data on PORT A pins will be latched when STB is active and transparent otherwise (polarity programmed by D5 of the Port B-F direction control register)
1421	I/O	PA0PA7	8 general purpose I/O pins comprising PORT A. This port supports individual input or latched output configuration of each pin . In addition, each pin of PORT A selected as an input can be programmed to be latched or transparent.
22,	I/O	PB0PB7	8 general purpose I/O pins comprising PORT B. All 8
24.30			pins are programmed to be either latched outputs or transparent inputs.
3139	I/O	PC0PC7	Identical to PORT B


FUNCTIONAL DESCRIPTION

The SA9203 contains the following:

- Six 8-bit general purpose I/O ports programmable to be either byte or bit addressable.
- Two control registers for configuring the device. These control registers can be read back.
- An internal address latch for accessing a multiplexed CPU address/data bus.
- The SA9203 appears to the CPU as a peripheral device occupying 256 bytes of memory space. Certain locations in the memory map are occupied by the six I/O ports and two control registers.

The SA9203 supports two basic I/O port addressing modes, via; byte-addressing and bit-addressing. Any of the six I/O ports can be configured as byte-addressable /or bit-addressable. In bit-addressing, individual bits of any I/O port can be addressed independently. In a bit-addressing CPU read operation, D0 contains valid data while D1..D7 should be ignored. In a bit-addressing CPU write operation, D0 will be written to the addressed output pin while D1..D7 will be ignored. The Address Memory map is shown in Figure 5. The bit-addressing mode applies to both the I/O ports and the control registers. The SA9205 is a three port device with operation is identical to the SA9203.

FIGURE 5: Address Memory Map

FIGURE 6: PORT A Direction Control Register Address.

A5	A4	A3
1	1	0

FIGURE 7: PORT B..F Direction Control Register / Strobe Control Register Address

A5	A4	A3		
1	1	1		

FIGURE 8: PORT Addresses

A5	A4	А3	PORT
0	0	0	PORT A
0	0	1	PORT B
0	1	0	PORT C
0	1	1	PORT D *
1	0	0	PORT E *
1	0	1	PORT F *

^{* -} n/a for the SA9205

FIGURE 9: Port Pin Addresses (Bit Mode Only).

A2	A1	A0	PORT PIN
0	0	0	PORT A-F.0
0	0	1	PORT A-F.1
0	1	0	PORT A-F.2
0	1	1	PORT A-F.3
1	0	0	PORT A-F.4
1	0	1	PORT A-F.5
1	1	0	PORT A-F.6
1	1	1	PORT A-F.7

Note: PORT A-C for SA9205

CONTROL REGISTERS

FIGURE 10: PORT A Direction Control Register

| R/W |
|------|------|------|------|------|------|------|------|
| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| PA.7 | PA.6 | PA.5 | PA.4 | PA.3 | PA.2 | PA.1 | PA.0 |

D = 1 Port A Pin configured as output

D = 0 Port A Pin configured as input.

FIGURE 11: PORT B-F Direction Control / Strobe Control Register Address

			I		I				
R/W		R/W		R/W					
D7	D6	D5	D4	D3	D2	D1	-	D0	
IP	IE	SP	DF*	DE*	DD*	DC	;	DB	
									 0: PORT B Configured as input 1: PORT B Configured as output 0: PORT C Configured as input 1: PORT C Configured as output 0: PORT D Configured as input 1: PORT D Configured as output 0: PORT E Configured as input 1: PORT E Configured as output
									0: PORT F Configured as input
									 1: PORT F Configured as output
									0: PORT A data latched when STB low and transparent when STB high.
									1 - Port A data latched when STB high and transparent when STB low.
									0 - Interupt output (INT) set on the rising edge of STB.
									 1 - Interupt output (INT) set on the falling edge of STB.
									 O: Interupt output active High 1: Interupt output active low

^{*} n/a for the SA9205

INT

This active high output (default after reset) operates as follows:

When disabled (via A6), INT remains reset. On either the rising or trailing edge of STB (programmable via D6 of Port B-F direction control register), INT is set. INT remains set until Port A (or any bit of PORT A if in bit- addressing mode) is read by the microprocessor at which point INT is reset, remaining so until the next active edge of STB. (See figure 14 for timing diagram). The output polarity of INT is programmed via D7 of the Port B- F direction control register (See Figure 11).

RST

This active low reset signal resets the contents of all registers to zero. Sets all ports to input mode and the bi-directional data/address bus to input. A valid RST signal is specified as an active low pulse of 100ns minimum duration.

CS

The active low CS signal is internally latched by the trailing edge of ALE.

TIMING DIAGRAMS

FIGURE 12: µP Read Waveforms

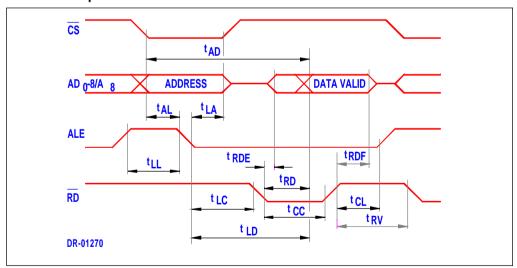


FIGURE 13: µP Write Waveforms

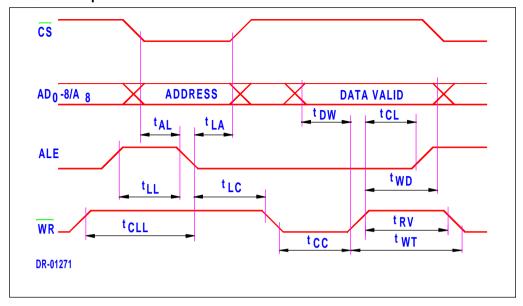


FIGURE 14: µP Strobe/Interrupt Waveforms

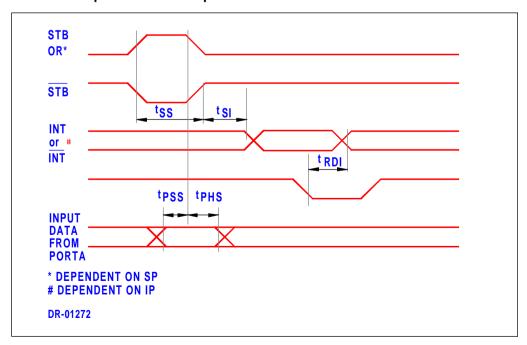


FIGURE 15: I/O Port Waveforms Transparent Output

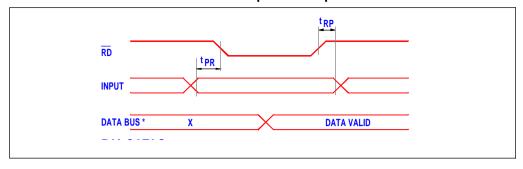


FIGURE 16: µP Read Waveforms Latched Output

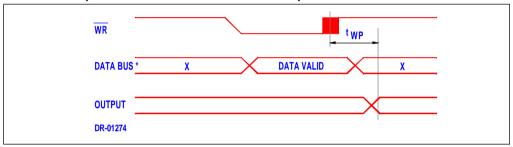


Table 1: AC Characteristics for μ P Interface1 - TA = 0°C to 70°C, VDD = 5V 10%

Symbol	Parameter	Min	Max	Units
t _{AL}	Address to Latch Setup Time	10		ns
t _{LA}	Address Hold Time after Latch	10		ns
t _{LC}	Latch to READ/WRITE Control	10		ns
t _{RD}	Valid Data Out Delay from READ Control		50	ns
t _{LD}	Latch to Data Out Valid		50	ns
t _{AD}	Address Stable to Data Out Valid		100	ns
t _{LL}	Latch Enable Width	30		ns
t _{RDF}	Data Bus Float after READ	0	40	ns
t _{CL}	READ/WRITE Control to Latch Enable	10		ns
t _{CLL}	WRITE Control to Latch Enable	50		ns
t _{cc}	READ/WRITE Control Width	60		ns
t _{DW}	Data in to WRITE Setup Time	20		ns
t _{wD}	Data in Hold Time after WRITE	20		ns
t _{RV}	Recovery Time between READ/WRITE	50		ns
t _{RDE}	Data Bus Enable from READ Control	10	·	ns

12/14

Table 2: A.C. Characteristics for I/O Ports

Symbol	Parameter	Min	Max	Units
t _{PR}	Port Input Setup Time	20		ns
t _{RP}	Port Input Hold Time	0		ns
t _{ss}	Strobe Width	100		ns
t _{sı}	Strobe to INT Set		100	ns
t _{RD}	READ to INT Reset		100	ns
t _{PSS}	Port Setup Time to Strobe	50		ns
t _{PHS}	Port Hold Time After Strobe	120		ns
t _{wP}	WRITE to Port Output		80	ns

Note 1: Timing parameters are preliminary and subject to change.

SA9203/5

Disclaimer: The information contained in this document is confidential and proprietary to South African Micro-Electronic Systems (Pty) Ltd ("SAMES) and may not be copied or disclosed to a third party, in whole or in part, without the express written consent of SAMES. The information contained herein is current as of the date of publication; however, delivery of this document shall not under any circumstances create any implication that the information contained herein is correct as of any time subsequent to such date. SAMES does not undertake to inform any recipient of this document of any changes in the information contained herein, and SAMES expressly reserves the right to make changes in such information, without notification, even if such changes would render information contained herein inaccurate or incomplete. SAMES makes no representation or warranty that any circuit designed by reference to the information contained herein, will function without errors and as intended by the designer.

South African Micro-Electronic Systems (Pty) Ltd

P O Box 15888, 33 Eland Street,

Lynn East, Koedoespoort Industrial Area,

0039 Pretoria,

Republic of South Africa, Republic of South Africa

Tel: 012 333-6021 Tel: Int +27 12 333-6021 Fax: 012 333-8071 Fax: Int +27 12 333-8071

14/14

