

No.2152A

2SA1528/2SC3922

PNP/ NPN Epitaxial Planar Silicon Transistors

Switching Applications (with Bias Resistance)

Applications

. Switching circuits, inverter circuits, interface circuits, driver circuits

Features

- . On-chip bias resistance: $R_1\!=\!2.2k\Omega,R_2\!=\!10k\Omega$
- . Large current capacity: $I_C = 500 \text{mA}$

(): 2SA1528

(). 23A1320	_	
Absolute Maximum Ratings at Ta=	25 ⁰ C	unit
0-11	V _{CBO} (-)50	v
Collector to Emitter Voltage	VCEO (-)50	v
Emitter to Base Voltage	VEBO (-)6	v
Collector Current	$I_{\rm C}^{\rm EBO}$ (-)500	mΑ
Collector Current (Pulse)	I_{CP}^{C} (-)800	mΑ
	PC 600	щW
Junction Temperature	T. 150	mW C
Storage Temperature	T ^J -55 to +150	°C
	DLE	

	0			
Electrical Characteristics	at Ta=25	°c	min typ max	unit
Collector Cutoff Current	I TCBO	$V_{CB} = (-)40V, I_{E} = 0$	(-)0.1	$\mu \stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}}{\stackrel{\mathbf{A}}}}}{\stackrel{\mathbf{A}}{\stackrel{\mathbf{A}}}}}}}}}}$
Emitter Cutoff Current DC Current Gain	ICEO LEBO her	$V_{CE}^{CB} = (-)40V, I_{B}^{E} = 0$ $V_{CE}^{EB} = (-)5V, I_{C}^{E} = (-)10m$ $V_{CE}^{E} = (-)10V, I_{C}^{E} = (-)5m$	(-)0.5 (-)315(-)410(-)590 A 50	μ A μ A
Gain-Bandwidth Product	hFE fT	$V_{CE}^{CE} = (-)10V, Y_{C} = (-)5m$	A 250	MHz
	-	-	(200)	MHz
Output Capacitance	c ob	$V_{CR} = (-)10V, f = 1MHz$	3.7	рF
	OD	GB	(5.5)	рF
Collector to Emitter Saturation Voltage	VCE(sat)	$I_{R} = (-)50mA,$ $I_{R} = (-)2.5mA$	(-)0.1(-)0.3	V
Collector to Base Breakdown Voltage	V(BR)CBO	$I_C^B = (-) 10 \mu A, I_E = 0$	(-)50	v
Collector to Emitter Breakdown Voltage	V(BR)CEO	$I_{C} = (-) 100 \mu A, R_{BE} = \infty$	(-)50	V

Continued on next page.

2\$A1528:PNP

2sc3922:NPN

Package Dimensions 2003A (unit: mm)

Continued from preceding page.

T			min typ max	unit
Input OFF-State Voltage	VI(off)	$V_{CF} = (-)5V$	(-)0.5(-)0.67(-)0.9	V
	I(OII)	$I_{\alpha} = (-) I U U \mu A$		
Input ON-State Voltage	$^{orall}{ ext{I(on)}}$	$V_{\rm op}^{\rm o} = (-)0.2V$	(-)0.7(-)1.6(-)3.0	v
	I(OI)	$V_{CE}^{C}=(-)0.2V,$ $I_{C}^{CE}=(-)50mA$, , , , , , , , , , , , , , , , , , , ,	•
Input Resistance	R1	C	1.5 2.2 2.9	$\mathbf{k}\Omega$
Resistance Ratio	R1/R2		0.198 0.22 0.242	17.0
	,		01170 0122 01242	

(For PNP.

0,7

Input OFF Voltage, VI(off)

minus sign is omitted.)

0.8

0.9

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - 2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.