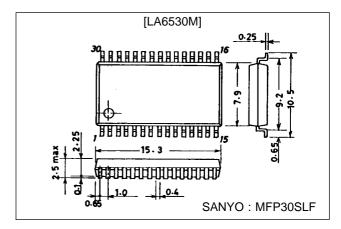
Monolithic Linear IC

SANYO 2-channel Bridge Driver for CD and CD-ROMs

Overview

The LA6530M is a 2-channel bridge (BTL) driver which was developed for compact discs and CD-ROMs.


Features

- High output current ($I_O \max = 0.7 \text{ A}$).
- Wide operating voltage range (4 to 15 V).
- Small input bias current.

Package Dimensions

unit : mm

3073A-MFP30SLF

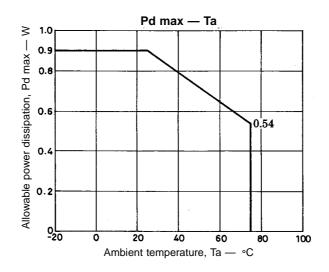
Specifications

Maximum Ratings at Ta = $25 \circ C$

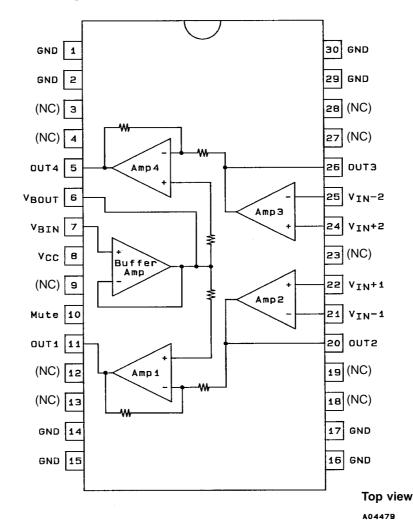
Parameter	Symbol	Conditions	Ratings	Unit	
Maximum supply voltage	V _{CC} max		16	V	
Differential input voltage	V _{ID}	Amplifier 2, amplifier 3	15	V	
Common-mode input voltage	V _{ICM}	Amplifier 2, amplifier 3	15	V	
Maximum input voltage	V _{INB}	Buffer amplifier	15	V	
Mute pin maximum inflow current	I _M max		1.0	mA	
Maximum output current	I _O max		0.7	A	
Allowable power dissipation	Pd max		0.9	W	
Operating temperature	Topr		-20 to +75	°C	
Storage temperature	Tstg		-55 to +150	°C	

Operating Conditions at Ta = $25 \circ C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	V
Operating voltage range	V _{CC} op		4.0 to 15.0	V
Recommended load resistance	RL	Pin 11 to 20, pin 5 to 26	8.0	Ω


Electrical Characteristics at Ta = 25 °C, V_{CC} = 5.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
	I _{CC} 1	Mute off pins 7, 22 and 24 connected to GND	5	10	20	mA
No-load current drain	I _{CC} 2	Mute on pins 7, 22 and 24 connected to GND	3	7	15	mA
No-load current drain	I _{CC} 3	Mute off pins 7, 22 and 24 connected to 1/2 V_{CC}	10	20	30	mA
	I _{CC} 4	Mute on pins 7, 22 and 24 connected to 1/2 V_{CC}	4	8	16	mA
Output offset voltage	V _{OF} 1	OUT1-OUT2	-50		+50	mV
Output onset voltage	V _{OF} 2	OUT4-OUT3	-50		+50	mV
Input-output voltage difference	V _{BIO}	Buffer amplifier	-30		+30	mV
Input voltage range	VBICM	Buffer amplifier	1.5	V _{CC} -1.5		V
Common-mode input voltage	VICM	Amplifier 2, amplifier 3	1.0	V _{CC} -1.5		V
range	·ICM					
Input bias current	I _B			50	300	nA
Output voltage	Vo	8 Ω load between pins 11 — 20, 5 — 26	2.8	3.3		V
Bridge output voltage difference	V _{OD}	8 Ω load between pins 11 — 20, 5 — 26	1.8	2.2		V
Closed-circuit voltage gain	VG	Specified Test Circuit, f = 1 kHz	30	38		dB
Mute on voltage	VM			0.7		V
Mute pin inflow current	١ _M			3.0		μA


*Thermal shutdown function built in.

Notes:

- 1. When the muting function is on, the OUT1 to OUT4 outputs are turned off and the buffer output is not turned off.
- 2. This IC must be handled carefully owing to its susceptibility electrostatic discharge damage.

Block Diagram and Pin Assignment

Do not use the NC pin.

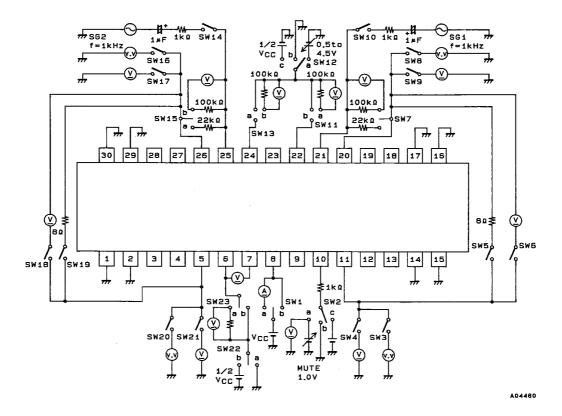
Test Method

SW No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Item																							
I _{CC} 1	а	b	OFF	OFF	OFF	OFF	b	OFF	OFF	OFF	b	b	а	OFF	а	OFF	OFF	OFF	OFF	OFF	OFF	а	b
I _{CC} 2	а	с	OFF	OFF	OFF	OFF	b	OFF	OFF	OFF	b	b	а	OFF	а	OFF	OFF	OFF	OFF	OFF	OFF	а	b
I _{CC} 3	а	b	OFF	OFF	OFF	OFF	b	OFF	OFF	OFF	b	с	а	OFF	а	OFF	OFF	OFF	OFF	OFF	OFF	b	b
I _{CC} 4	а	с	OFF	OFF	OFF	OFF	b	OFF	OFF	OFF	b	с	а	OFF	а	OFF	OFF	OFF	OFF	OFF	OFF	b	b
V _{OF} 1,2	b	b	OFF	OFF	OFF	ON	b	OFF	OFF	OFF	b	с	а	OFF	а	OFF	OFF	ON	OFF	OFF	OFF	b	b
V _{BIO}	b	b	OFF	OFF	OFF	ON	b	OFF	OFF	OFF	b	с	а	OFF	а	OFF	OFF	ON	OFF	OFF	OFF	b	b
IB	b	b	OFF	OFF	OFF	OFF	а	OFF	OFF	OFF	а	с	b	OFF	b	OFF	OFF	OFF	OFF	OFF	OFF	b	а
VO	b	b	OFF	ON	ON	OFF	b	OFF	ON	OFF	b	а	а	OFF	а	OFF	ON	OFF	ON	OFF	ON	b	b
V _{OD}	b	b	OFF	OFF	ON	ON	b	OFF	OFF	OFF	b	а	а	OFF	а	OFF	OFF	ON	ON	OFF	OFF	b	b
VG	b	b	ON	OFF	OFF	OFF	а	ON	OFF	ON	b	с	а	ON	b	ON	OFF	OFF	OFF	ON	OFF	b	b
VM	b	а	OFF	ON	OFF	OFF	b	OFF	ON	OFF	b	с	а	OFF	а	OFF	ON	OFF	OFF	OFF	ON	b	b

1. For $I_{CC}1$ to 4, measure the circuit current.

2. For V_{OF1} and 2, measure the voltage between pins 11 and 20 and the voltage between pins 5 and 26.

3. For V_{BIO} , measure the voltage between pins 7 and 6.


4. For $I_B,$ measure the voltage across the 100 $k\Omega$ resistor.

5. For V_O, measure the voltage on pins 11, 20, 5 and 26 by switching the input pin voltage to 0.5 V and 4.5 V, respectively.

- 6. For V_{OD} , measure the voltage between pins 11 and 20 and the voltage between pins 5 and 26.
- 7. For VG, measure the voltage on pins 11, 20, 5 and 26 at f = 1 kHz, and use the following formula: VG = 20 log V_0/V_1 dB.

8. V_M is the mute voltage when the mute voltage is varied and the output is turned off.

Test Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1995. Specifications and information herein are subject to change without notice.