

Preliminary

Overview

The LC72341G/W, LC72342G/W, and LC72343G/W are single-chip microcontrollers with both a $1 / 4$-duty $1 / 2$-bias LCD driver circuit and a PLL circuit that can operate at up to 250 MHz integrated on the same chip. These ICs are ideal for use in portable audio equipment.

Functions

- High-speed programmable divider
- Program memory (ROM)
- LC72341G/W: 2048 words $\times 16$ bits (4KB)
— LC72342G/W: 3072 words $\times 16$ bits (6 KB)
— LC72343G/W: 4096 words $\times 16$ bits (8 KB)
- Data memory (RAM)
- LC72341G/W: 128 words $\times 4$ bits
- LC72342G/W: 192 words $\times 4$ bits
- LC72343G/W: 256 words $\times 4$ bits
- Instruction cycle time
- $40 \mu \mathrm{~s}$ (for all single-word instructions.)
- Stack
- 4 levels (LC72341G/W)
- 8 levels (LC72342G/W, and LC72343G/W)
- LCD driver
- 48 to 80 segments (1/4-duty 1/2-bias drive)
- Timer interrupts
- One timer circuit providing intervals of $1,5,10$, and 50 ms .
- External interrupts
- One external interrupt (INT)
- A/D converter
- Two channels (5-bit successive approximation)
- Input ports
- 7 (Of which two can be switched to function as A/D converter inputs)
- Output ports
- 6 (Of which one can be switched to function as the BEEP tone output. Two ports are open-drain ports.)
- I/O
ports
- 16 (Of which 8 can be selected to function as LCD ports as mask options.)
- PLL circuit
- Two types of dead band control are supported, and an unlock detection circuit is included.

Reference frequencies of $1,3,5,6.25,12.5$, and 25 kHz can be provided.

- Input frequency range
- FM band: 10 to 130 MHz

130 to 250 MHz

- AM band: 0.5 to 15 MHz

Package Dimensions

unit: mm
3159-QFP64G

unit: mm
3159-SQFP64

- IF counter
- HCTR input pin; 0.4 to 12 MHz
- Voltage detection circuit (VSENSE)
- Detects the V_{DD} voltage and sets a flag
- External reset pin
- Restarts execution from location 0 when the CPU and PLL circuits are operating
- Power on reset circuit
- Starts execution from location 0 at power on.
- Universal counter
- 20 bits
- Beep tones
- 3.1 and 1.5 kHz
- Halt mode: The microcontroller operating clock is stopped
- Backup mode: The crystal oscillator is stopped
- An amplifier for a low-pass filter is built in
- CPU and PLL circuit operating voltage
- 1.8 to 3.6 V
- RAM data retention voltage
- 1.0 V or higher
- Packages
— QIP-64G : 0.8-mm lead pitch
- SQFP-64: 0.5-mm lead pitch

Pin Assignment

* The I/O ports can be set to input or output individually.
* The functions of the segment/general-purpose ports can be set in bit units.

Block Diagram

Specifications
Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {DD }}$ max		-0.3 to +4.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$	All input pins	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	$\mathrm{V}_{\text {OUT }}{ }^{1}$	AOUT, PE	-0.3 to +15	V
	$\mathrm{V}_{\text {OUT }}{ }^{2}$	All output pins except $\mathrm{V}_{\text {OUT }} 1$	-0.3 to V_{DD} to +0.3	V
Output current	lout1	PC, PD, PG, PH, EO	0 to 3	mA
	lout2	PB	0 to 1	mA
	lout3	AOUT, PE	0 to 2	mA
	lout4	S1 to S20	300	$\mu \mathrm{A}$
	lout5	COM1 to COM4	3	mA
Allowable power dissipation	Pd max	$\mathrm{Ta}=-20$ to $+70^{\circ} \mathrm{C}$	300	mW
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-45 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{- 2 0}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 3.6 V

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$\mathrm{V}_{\mathrm{DD}} 1$	CPU and PLL operating voltage	1.8	3.0	3.6	V
	$\mathrm{V}_{\mathrm{DD}}{ }^{2}$	Memory retention voltage	1.0			V
Input high-level voltage	$\mathrm{V}_{\mathrm{H} 1} 1$	$\mathrm{V}_{\mathrm{IH}} 2, \mathrm{~V}_{\mathrm{IH}} 3$, AMIN, FMIN, Input ports except HCTR and XIN.	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V
	$\mathrm{V}_{1 \mathrm{H}^{2}}$	$\overline{\text { RES }}$	0.8 V DD		$V_{D D}$	V
	$\mathrm{V}_{\mathrm{H}} 3$	Port PF	0.6 VDD		$V_{D D}$	V
Input low-level voltage	$\mathrm{V}_{\text {IL }} 1$	$\mathrm{V}_{\mathrm{IL}} 2, \mathrm{~V}_{\mathrm{IL}} 3, \mathrm{AMIN}, \mathrm{FMIN}$, Input ports except HCTR and XIN.	0		0.3 V DD	V
	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	$\overline{\text { RES }}$	0		$0.2 V_{\text {DD }}$	V
	$\mathrm{V}_{\mathrm{IL}} 3$	Port PF	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
Input amplitude	$\mathrm{V}_{\text {IN }} 1$	XIN	0.5		0.6	Vrms
	$\mathrm{V}_{\mathrm{IN}} 2$	FMIN, AMIN	0.035		0.35	Vrms
	$\mathrm{V}_{\mathrm{IN}} 3$	FMIN	0.05		0.35	Vrms
	$\mathrm{V}_{\text {IN }} 4$	HCTR	0.035		0.35	Vrms
Input voltage range	$\mathrm{V}_{\text {IN }} 5$	ADIO, ADI1	0		$V_{\text {DD }}$	V
Input frequency	$\mathrm{F}_{\text {IN } 1}$	XIN : $\mathrm{Cl} \leq 35 \mathrm{k} \Omega$	70	75	80	kHz
	F_{IN} 2	FMIN : $\mathrm{V}_{\mathrm{IN}} 2, \mathrm{~V}_{\mathrm{DD}} 1$	10		130	MHz
	$\mathrm{F}_{\text {IN }} 3$	FMIN : $\mathrm{V}_{\text {IN }} 3, \mathrm{~V}_{\text {DD }} 1$	130		250	MHz
	$\mathrm{F}_{\text {IN } 4}$	AMIN (H) : $\mathrm{V}_{\mathbb{I N}} 2, \mathrm{~V}_{\text {DD }} 1$	2		40	MHz
	$\mathrm{F}_{\text {IN }} 5$	AMIN (L) : $\mathrm{V}_{\text {IN }} 2$, $\mathrm{V}_{\text {DD }} 1$	0.5		10	MHz
	$\mathrm{F}_{\text {IN } 6}$	HCTR : $\mathrm{V}_{\text {IN }} 4, \mathrm{~V}_{\text {DD }} 1$	0.4		12	MHz

Electrical Characteristics at $\mathrm{Ta}=-20$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 3.6 V (in the allowable operating ranges)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input high-level current	$\mathrm{l}_{\mathrm{H}} 1$	$\mathrm{X}_{\mathrm{IN}}: \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			3	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{IH} 2}$	FMIN, AMIN, HCTR : $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	3	8	20	$\mu \mathrm{A}$
	1_{1+3}	Ports PA/PF (with no pull-down resistor), PC, PD, PG, and PH. RES: $\mathrm{V}_{I}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			3	$\mu \mathrm{A}$
Input low-level current	$l_{\text {IL }} 1$	XIN : $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {SS }}$			-3	$\mu \mathrm{A}$
	$I_{1 L}{ }^{2}$	FMIN, AMIN, HCTR : $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {SS }}$	-3	-8	-20	$\mu \mathrm{A}$
	$l_{1 L} 3$	Ports PA/PF (with no pull-down resistor), PC, PD, PG, and PH. RES: $V_{I}=V_{D D}=V_{S S}$			-3	$\mu \mathrm{A}$
Input floating voltage	$\mathrm{V}_{\text {IF }}$	PA/PF with pull-down resistors used			$0.05 \mathrm{~V}_{\mathrm{DD}}$	V
Pull-down resistance	RPD1	PA/PF with pull-down resistors used, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	75	100	200	$\mathrm{k} \Omega$
Hysteresis	V_{H}	$\overline{\text { RES }}$	$0.1 \mathrm{~V}_{\mathrm{DD}}$	$0.2 \mathrm{~V}_{\mathrm{DD}}$		V
Voltage doubler reference voltage	DBR4	$\mathrm{Ta}=25^{\circ} \mathrm{C}$, referenced to $\mathrm{V}_{\mathrm{DD}}, \mathrm{C} 3=0.47 \mu \mathrm{~F}$	1.3	1.5	1.7	V
Voltage doubler step-up voltage	DBR1, 2, 3	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{C} 1=0.45 \mu \mathrm{~F}, \mathrm{C} 2=0.47 \mu \mathrm{~F}$, no load	2.7	3.0	3.3	V

Electrical Characteristics at $\mathbf{T a}=\mathbf{- 3 0}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 3.6 V (in the allowable operating ranges)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}} 1$	$\mathrm{PB}: \mathrm{l}_{\mathrm{O}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.7 \mathrm{~V}_{\mathrm{DD}}$			V
	$\mathrm{V}_{\mathrm{OH}} 2$	PC, PD, PG, PH : $\mathrm{l}_{\mathrm{O}}=-1 \mathrm{~mA}$	$V_{D D}-0.3 V_{D D}$			V
	$\mathrm{V}_{\mathrm{OH}}{ }^{\text {l }}$	EO : $\mathrm{I}_{0}=-500 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}_{\mathrm{D}}$			V
	$\mathrm{V}_{\mathrm{OH}} 4$	XOUT : $\mathrm{I}_{0}=-200 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}_{\mathrm{DD}}$			V
	V_{OH}	S1 to S20 : $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A}: * 1$	2.0			V
	Vон6	COM1, COM2, COM3, COM4: $\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}: * 1$	2.0			V
Output low-level voltage	$\mathrm{V}_{\text {OL }} 1$	PB : $\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A}$			$0.7 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\mathrm{OL}} 2$	PC, PD, PE, PG, PH : $\mathrm{I}_{0}=-1 \mathrm{~mA}$			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\mathrm{OL}} 3$	EO : $\mathrm{I}_{0}=-500 \mu \mathrm{~A}$			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {OL }} 4$	XOUT : $\mathrm{I}_{0}=-200 \mu \mathrm{~A}$			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {OL }} 5$	S1 to S20 : $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}: * 1$			1.0	V
	$\mathrm{V}_{\text {OL }} 6$	COM1, COM2, COM3, COM4 : $\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}: * 1$			1.0	V
	$\mathrm{V}_{\text {OL }} 7$	PE : $\mathrm{I}_{0}=5 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}} 8$	AOUT : $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{AIN}=1.3 \mathrm{~V}, \mathrm{~V} \mathrm{DD}=3 \mathrm{~V}$			0.5	V
Output off leakage current	loff1	Ports PB, PC, PD, PG, PH, and EO	-3		+3	$\mu \mathrm{A}$
	$\mathrm{l}_{\mathrm{OFF}} 2$	Ports AOUT and PE	-100		+100	nA
A/D conversion error		ADIO, ADI1, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} 1$	-1/2		+1/2	LSB

Note: 1. Capacitors C1, C2, and C3 must be connected to the DBR pins.

Electrical Characteristics at $\mathbf{T a}=\mathbf{- 2 0}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 3.6 V (in the allowable operating ranges)

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Falling supply voltage detection voltage	$\mathrm{V}_{\text {SENSE }}{ }^{1}$	$\mathrm{Ta}=25^{\circ} \mathrm{C} * 2$	1.6	1.75	1.9	V
Rising supply voltage detection voltage	$V_{\text {SENSE }}$ 2	$\mathrm{Ta}=25^{\circ} \mathrm{C} * 2$	VSENSE1 +0.1		VSENSE1 +0.2	V
Pull-down resistance	$\mathrm{R}_{\mathrm{PD}} 2$	TEST1, TEST2		10		$\mathrm{k} \Omega$
Supply current	IDD 1	$V_{\text {DD }} 1: \mathrm{F}_{\text {IN }} 2130 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$		10		mA
	ldD 2	$\mathrm{V}_{\mathrm{DD}} 2$: In halt mode at $\mathrm{Ta}=25^{\circ} \mathrm{C}$, *3		0.1		mA
	IDD3	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$, with the oscillator stopped, at $\mathrm{Ta}=25^{\circ} \mathrm{C}$, * 4		1		$\mu \mathrm{A}$
	IDD4	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$, with the oscillator stopped, at $\mathrm{Ta}=25^{\circ} \mathrm{C}, * 4$		0.5		$\mu \mathrm{A}$

Note: The halt mode current is measured with the CPU executing 20 instructions every 125 ms .

Note: 2. The $V_{\text {SENSE }}$ voltage
When the $\mathrm{V}_{\text {DD }}$ voltage falls, the $\mathrm{V}_{\text {SENSE }}$ flag is set at the point that voltage falls under 1.75 V (typical). The TST instruction can be used to read the value of the $V_{\text {SENSE }}$ flag. Applications can easily determine when the batteries are exhausted by monitoring this flag. After $\mathrm{V}_{\text {SENSE }}$ is set when the supply voltage falls, it will not be reset if the supply voltage rises by less than 0.1 V , because the voltages detected by the $\mathrm{V}_{\text {SENSE }}$ circuit differ when the supply voltage is falling and when the supply voltage is rising.

Note: 3. Halt Mode Current Test Circuit

All ports other than those specified in the figure must be left open.
Set ports PC and PD to output.
Select segments S13 to S20.

Note: 4. Backup Mode Current Test Circuit

Pin Functions

Pin No.	Pin	I/O	Function	I/O circuit
64 1	$\begin{gathered} \text { XIN } \\ \text { XOUT } \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Connections for a $75-\mathrm{kHz}$ crystal oscillator element	
$\begin{gathered} 63 \\ 2 \end{gathered}$	TEST1 TEST2	\|	IC test pins. These pins must be tied to ground.	
$\begin{aligned} & 6 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PA0 } \\ & \text { PA1 } \\ & \text { PA2 } \\ & \text { PA3 } \end{aligned}$	1	Special-purpose key return signal input ports designed with a low threshold voltage. When used in conjunction with port PB to form a key matrix, up to 3 simultaneous key presses can be detected. The four pull-down resistors are selected together in a single operation using the IOS instruction ($\mathrm{PWn}=2$, b1); they cannot be specified individually. Input is disabled in backup mode, and the pull-down resistors are disabled after a reset.	Input with built-in pulldown resistor A09874
$\begin{gathered} 10 \\ 9 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & \text { PB3 } \\ & \text { PB2 } \\ & \text { PB1 } \\ & \text { PB0 } \end{aligned}$	O	Special-purpose key source signal output ports. Since unbalanced CMOS output transistor circuits are used, diodes to prevent short-circuits when multiple keys are pressed are not required. These ports go to the output high-impedance state in backup mode. These ports go to the output high-impedance state after a reset and remain in that state until an output instruction (OUT, SPB, or RPB) is executed. Care is required in designing the output loads if these pins are used for functions other than key source outputs.	Unbalanced CMOS push-pull circuit A09875
$\begin{aligned} & 14 \\ & 13 \\ & 12 \\ & 11 \\ & 18 \\ & 17 \\ & 16 \\ & 15 \end{aligned}$	PC0 PC1 PC2 PC3 INT/PD0 PD1 PD2 PD3	1/O	General-purpose I/O ports*. PDO can be used as an external interrupt port. Input or output mode can be set in a bit unit using the IOS instruction (Pwn $=4,5$). A value of 0 specifies input, and 1 specifies output. These ports go to the input disabled highimpedance state in backup mode. They are set to function as general-purpose input ports after a reset.	CMOS push-pull circuit
$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{gathered} \text { BEEP/PE0 } \\ \text { PE1 } \end{gathered}$		General-purpose output ports with shared beep tone output function (PEO only). The BEEP instruction is used to switch PEO between the general-purpose output port and beep tone output functions. To use PEO as a general-purpose output port, execute a BEEP instruction with b2 set to 0 . Set b2 to 1 to use PEO as the beep tone output port. The b0 and b1 bits are used to select the beep tone frequency. There are two beep tone frequencies supported. When PEO is set up as the beep tone output, executing an output instruction to PNO only changes the state of the internal output latch, it does not affect the beep tone output in any way. Only the PEO pin can be switched between the general-purpose output function and the beep tone output function; the PE1 pin only functions as a generalpurpose output. These pins go to the high-impedance state in backup mode and remain in that state until an output instruction or a BEEP instruction is executed. Since these ports are open-drain ports, resistors must be inserted between these pins and $V_{D D}$. These ports are set to their general-purpose output port function after a reset.	N -channel open drain A09877
$\begin{aligned} & 23 \\ & 22 \\ & 21 \end{aligned}$	PFO/ADIO PF1/ADI1 PF2	1	General-purpose input and A/D converter input shared function ports (PF2 is a generalpurpose input only port). The IOS instruction (Pwn = FH) is used to switch between the general-purpose input and A/D converter port functions. The general-purpose input and A/D converter port functions can be switched in a bit unit, with 0 specifying generalpurpose input, and 1 specifying the A / D converter input function. To select the A / D converter function, set up the A/D converter pin with an IOS instruction with Pwn set to 1. The A/D converter is started with the UCC instruction ($b 3=1, b 2=1$). The ADCE flag is set when the conversion completes. The INR instruction is used to read in the data. If an input instruction is executed for one of these pins which is set up for analog input, the read in data will be at the low level since CMOS input is disabled. In backup mode these pins go to the input disabled high-impedance state. These ports are set to their general-purpose input port function after a reset. The A/D converter is a 5 -bit successive approximation type converter, and features a conversion time of 1.28 ms . Note that the full-scale A / D converter voltage (1 FH) is $(63 \cdot 96) \mathrm{V}_{\mathrm{DD}}$.	CMOS input/analog input A09878

Note: * Applications must establish the output data in advance with an OUT, SPB, or RPB instruction and then set the pin to output mode with an IOS instruction when using the I/O switchable ports as output pins.

Continued on next page

Continued from preceding page.

Pin No.	Pin	I/O	Function	I/O circuit
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{PG} 3 / \mathrm{S} 20 \\ & \mathrm{PG} 2 / \mathrm{S} 19 \\ & \mathrm{PG} 1 / \mathrm{S} 18 \\ & \mathrm{PG} 0 / \mathrm{S} 17 \\ & \mathrm{PH} 3 / \mathrm{S} 16 \\ & \mathrm{PH} 2 / \mathrm{S} 15 \\ & \mathrm{PH} 1 / \mathrm{S} 14 \\ & \mathrm{PH} 0 / \mathrm{S} 13 \end{aligned}$	I/O	LCD driver segment output and general-purpose I/O shared function ports. The IOS instruction is used for switching both between the segment output and general-purpose I/O functions and between input and output for the general-purpose I/O port function.* - When used as segment output ports The general-purpose I/O port function is selected with the IOS instruction (Pwn = 8). $\text { b0 = S17 to 20/PG0 to } 3 \text { (0: Segment output, 1: PG0 to 3) }$ The general-purpose I/O port function is selected with the IOS instruction (Pwn =9). b0 = S13 to 16/PH0 to 3 (0: Segment output, 1: PH0 to 3) - When used as general-purpose I/O ports The IOS instruction (Pwn =6,7) is used to select input or output. Note that the mode can be set in a bit unit. $\begin{array}{ll} \mathrm{b} 0=\mathrm{PG} 0 & \mathrm{~b} 0=\mathrm{PH} 0 \\ \mathrm{~b} 1=\mathrm{PG} 1 \\ \mathrm{~b} 2=\mathrm{PG} 2 \\ \mathrm{~b} 3=\mathrm{PG} 3 & \mathrm{~b} 1=\mathrm{PH} 1 \quad \text { Input, 1: Output }] \\ \text { b2 }=\mathrm{PH} 2 \\ \text { [0: Input, 1: Output }] \\ \mathrm{b} 3=\mathrm{PH} 3 \end{array}$ In backup mode, these pins go to the input disabled, high-impedance state if set up as general-purpose outputs, and are fixed at the low level if set up as segment outputs. These ports are set up as segment outputs after a reset. Although the general-purpose port/LCD port setting is a mask option, the IOS instruction must be used as described above to set up the port function.	CMOS push-pull circuit A09879
$\begin{gathered} \text { S16 to } \\ \text { S1 } \end{gathered}$	33 to 44	0	LCD driver segment output pins. A $1 / 4$-duty $1 / 2$-bias drive technique is used. The frame frequency is 75 Hz . In backup mode, the outputs are fixed at the low level. After a reset, the outputs are fixed at the low level.	CMOS push-pull circuit
COM4 COM3 COM2 COM1	$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \end{aligned}$	0	LCD driver common output pins. A $1 / 4$-duty $1 / 2$-bias drive technique is used. The frame frequency is 75 Hz . In backup mode, the outputs are fixed at the low level. After a reset, the outputs are fixed at the low level.	
DBR4 DBR3 DBR2 DBR1	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$		LCD power supply stepped-up voltage pins.	
53	$\overline{\mathrm{RES}}$	1	System reset input. In CPU operating mode or halt mode, applications must apply a low level for at least one full machine cycle to reset the system and restart execution with the PC set to location 0 . This pin is connected in parallel with the internal power on reset circuit.	A09882
70	HCTR	1	Universal counter dedicated input port. - When taking frequency measurements, select the HCTR frequency measurement mode and measurement time with the UCS instruction $(\mathrm{b} 3=0, \mathrm{~b} 2=0)$ and start the count with a UCCinstruction. The CNTEND flag is set when the count completes. Since this circuit functions as an AC amplifier, always use capacitor coupling with the input signal. Input is disabled in backup mode, in halt mode, after a reset, and in PLL stop mode.	CMOS input/analog input A09883

Note: * Applications must establish the output data in advance with an OUT, SPB, or RPB instruction and then set the pin to output mode with an IOS instruction when using the I/O switchable ports as output pins.

Continued on next page

Continued from preceding page.

Pin No.	Pin	I/O	Function	I/O circuit
56	FMIN	1	FM VCO (local oscillator) input. This pin is selected with the PLL instruction CW1. The input must be capacitor coupled. Input is disabled in backup mode, in halt mode, after a reset, and in PLL stop mode.	CMOS amplifier input A09884
57	AMIN	1	AM VCO (local oscillator) input. This pin and the bandwidth are selected with the PLL instruction CW1. The input must be capacitor coupled. Input is disabled in backup mode, in halt mode, after a reset, and in PLL stop mode.	CMOS amplifier input
59	E0	0	The main charge pump output. When the local oscillator frequency divided by N is higher than the reference frequency a high level is output, when lower, a low level is output, and the pin is set to the high-impedance state when the frequencies match. Output goes to the high-impedance state in backup mode, in halt mode, after a reset, and in PLL stop mode.	Push-pull CMOS output
$\begin{aligned} & 60 \\ & 61 \\ & 62 \end{aligned}$	AIN AOUT AGND	0	Transistor used for the low-pass filter amplifier. Connect AGND to ground.	
$\begin{aligned} & 24 \\ & 58 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	Power supply pin. This pin must be connected to ground. Power supply pin. This pin must be connected to ground. Power supply pin. This pin must be connected to V_{DD}.	

Handling of Unused Pins

Pin No.	Pin	I/O type	Pin handling
3 to 6	PA port	I	Connect to V_{DD} or $\mathrm{V}_{\text {SS }}$. May be left open if the pull-up resistor is selected with the IOS instruction.
7 to 10	PB port	0	Open
11 to 14	PC port	I/O	Connect to V_{DD} or $\mathrm{V}_{S S}$ when input is selected. Leave open if output is selected.
15 to 18	PD port	1/O	Connect to V_{DD} or $\mathrm{V}_{S S}$ when input is selected. Leave open if output is selected.
19, 20	PE port	0	Open
21 to 23	PF port	I	Connect to V_{DD} or $\mathrm{V}_{\text {SS }}$. The PF2 pin only may be left open if the pull-up resistor is selected with the IOS instruction.
25 to 28	PG/S ports	I/O/S	Connect to V_{DD} or $\mathrm{V}_{S S}$ when input is selected. Leave open if output or LCD operation is selected.
29 to 32	PH/S ports	I/O/S	Connect to V_{DD} or $\mathrm{V}_{\text {SS }}$ when input is selected. Leave open if output or LCD operation is selected.
33 to 41	S port	0	Open
45 to 48	COM	0	Open
49	DBR1	-	Connect to DBR2 through a capacitor.
50	DBR2	-	Connect to DBR1 through a capacitor.
51	DBR3	-	Connect to $\mathrm{V}_{\text {SS }}$ through a capacitor.
52	DBR4	-	Connect to $\mathrm{V}_{\text {SS }}$ through a capacitor.
53	$\overline{\mathrm{RES}}$	I	V_{DD}
54	HCTR	1	$\mathrm{V}_{\text {SS }}$ Leave open if FMIN is used.
56	FMIN	I	$\mathrm{V}_{S S}$
57	AMIN	1	$\mathrm{V}_{S S}$
59	EO	0	Open
60	AIN	1	$\mathrm{V}_{S S}$
61	AOUT	0	Open
63	TEST1	1	Connect to $\mathrm{V}_{S S}$ or leave open. Connection to $\mathrm{V}_{S S}$ is preferable.
2	TEST2	1	Connect to $\mathrm{V}_{S S}$ or leave open. Connection to $\mathrm{V}_{S S}$ is preferable.

Mask Options

Port		Selection	
1	PG3/S20	General-purpose port	LCD port
2	PG2/S19	General-purpose port	LCD port
3	PG1/S18	General-purpose port	LCD port
4	PG0/S17	General-purpose port	LCD port
5	PH3/S16	General-purpose port	LCD port
6	PH2/S15	General-purpose port	LCD port
7	PH1/S14	General-purpose port	LCD port
8	PH0/S13	General-purpose port	LCD port

Development Environment and Tools

- The LC72P341 is available as a OTP version.
- The LC72EV340 is available as an evaluation chip.
- A total debugging system is formed by the combination of the TB-72EV32 evaluation chip board, the RE32 multifunction emulator, and a personal computer for system control.

Instruction Set

Instruction group	Mnemonic	Opcode		Machine code				Operation
		1st	2nd	$15 \quad 12$	211 8	$7 \quad 43$	0	
	AD	r	M	0100	:00: DH^{1}	DL	r	$r \leftarrow(r)+(M)$
	ADS	r	M	0100	:01: DH_{1}	DL	r	$r \leftarrow(\mathrm{r})+(\mathrm{M})$, skip if carry
	AC	r	M	0100	10 DH	DL	r	$r \leftarrow(r)+(M)+C$
	ACS	r	M	0100	111 DH:	DL	r	$r \leftarrow(r)+(M)+C$, skip if carry
	AI	M	1	0101	: $00: \mathrm{DH}$!	DL	1	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{l}$
	AIS	M	1	0101	! 01 ! DH!	DL :	I	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{l}$, skip if carry
	AIC	M	1	0101	10: 10 :	DL	1	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{I}+\mathrm{C}$
	AICS	M	1	0101	:11:DH!	DL	I	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{I}+\mathrm{C}$, skip if carry
	SU	r	M	0110	:00:DH:	DL :	r	$r \leftarrow(\mathrm{r})-(\mathrm{M})$
	SUS	r	M	0110	101 DH:	DL	r	$r \leftarrow(\mathrm{r})-(\mathrm{M})$, skip if borrow
	SB	r	M	0110	:10: DH:	DL	r	$r \leftarrow(\mathrm{r})-(\mathrm{M})-\mathrm{b}$
	SBS	r	M	0110	:11, DH:	DL :	r	$\mathrm{r} \leftarrow(\mathrm{r})-(\mathrm{M})-\mathrm{b}$, skip if borrow
	SI	M	1	0111	O0: DH:	DL	1	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{l}$
	SIS	M	1	0111	:01: $\mathrm{DH}^{\text {a }}$	DL	1	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{l}$, skip if borrow
	SIB	M	1	0111	10 DH	DL	I	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{l}-\mathrm{b}$
	SIBS	M	1	0111	:11:DH!	DL :	1	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{I}-\mathrm{b}$, skip if borrow
	SEQ	r	M	0001	O00 DH	DL	r	$(\mathrm{r}) \leftarrow(\mathrm{M})$, skip if zero
	SEQI	M	I	0001	10: DH:	DL	1	(M) - I, skip if zero
	SNEI	M	I	0000	:01: DH	DL	1	(M) - I, skip if not zero
	SGE	r	M	0001	10:DH:	DL	r	(r) - (M), skip if not borrow
	SGEI	M	1	0001	111 DH	DL :	1	(M) - I, skip if not borrow
	SLEI	M	1	0000	11: DH:	DL	1	(M) - I, skip if borrow
	ANDI	M	I	0010	: $01: \mathrm{DH}$	DL :	I	$\mathrm{M} \leftarrow(\mathrm{M})$ AND I
	ORI	M	1	0010	: $11: \mathrm{DH}$	DL	1	$\mathrm{M} \leftarrow(\mathrm{M})$ OR I
	EXLI	M	1	0011	:10: DH:	DL	1	$\mathrm{M} \leftarrow(\mathrm{M})$ XOR I
	AND	r	M	0010	: $00: \mathrm{DH}$	DL	r	$\mathrm{r} \leftarrow(\mathrm{r})$ AND M
	OR	r	M	0010	10:DH!	DL	r	$r \leftarrow(r)$ OR M
	EXL	r	M	0011	:00: DH:	DL	r	$r \leftarrow(\mathrm{r})$ XOR M
	SHR	r		0000	:00: 00 :	1110	r	Shift r right with carry
	LD	r	M	1101	:00: DH !	DL	r	$\mathrm{r} \leftarrow(\mathrm{M})$
	ST	M	r	1101	:01:DH:	DL	r	$\mathrm{M} \leftarrow(\mathrm{r})$
	MVRD	r	M	1101	:10: DH	DL	r	[DH, rn] $\leftarrow(\mathrm{M})$
	MVRS	M	r	1101	: 11 DH	DL	r	$\mathrm{M} \leftarrow[\mathrm{DH}, \mathrm{rn}]$
	MVSR	M1	M2	1110	:00: DH	DL1	DL2	[DH, DL1] $\leftarrow[\mathrm{DH}, \mathrm{DL2}$]
	MVI	M	1	1110	:01:DH!	DL	1	$\mathrm{M} \leftarrow \mathrm{I}$
Memory test instructions	TMT	M	N	1111	:00: DH	DL	N	if $M(N)=$ all 1 , then skip
	TMF	M	N	1111	101 DH	DL	N	if $M(N)=$ all 0 , then skip
	JMP	ADDR		100	ADDR (13 bits)			$\mathrm{PC} \leftarrow \mathrm{ADDR}$
	CAL	ADDR		101	ADDR (13 bits)			$\mathrm{PC} \leftarrow$ ADDR, Stack $\leftarrow(\mathrm{PC})+1$
	RT			0000	: 0000	1000		$\mathrm{PC} \leftarrow$ Stack
	RTI			0000	10000 !	1001		PC \leftarrow Stack, BANK \leftarrow Stak, carry \leftarrow stack
	SS	1	N	1111	: 1111	000:1	N	(Status reg. I) $\mathrm{N} \leftarrow 1$
	RS	1	N	1111	+1111	001, 1	N	(Status reg. I) $\mathrm{N} \leftarrow 0$
	TST	1	N	1111	1 1111 1 	01, !	N	if (Status reg. I) $\mathrm{N}=$ all 1, then skip
	TSF	1	N	1111	: 1111	10!	N	if (Status reg. I) $\mathrm{N}=$ all 0 , then skip
	TUL	N		0000	(100	1101	N	if Unlock F/F (N$)=$ all 0 , then skip

Continued on next page

Continued from preceding page.

Instruction group	Mnemonic	Opcode		Machine code					Operation
		1st	2nd	$15 \quad 12$	12:11 8	7	43	0	
	PLL	M	r	1111	:10: DH	DL	!	r	PLL reg. \leftarrow PLL data
	TMS	1		0000	: 0000 :	1100	,	1	Timer reg. \leftarrow I
	UCS	1		0000	0000	0001	,	1	UCS reg. $\leftarrow 1$
	UCC	1		0000	10000	0010	!	1	UCC reg. $\leftarrow 1$
	BEEP	I		0000	d 0000	0110	,	1	BEEP reg. $\leftarrow 1$
	DZC	1		0000	10000	1011	1	1	DZC reg. $\leftarrow 1$
	BANK	1		0000	10000	0111	!	1	BANK $\leftarrow 1$
	IOS	Pn	I	1111	1110	Pn	I	1	IOS reg. $\mathrm{Pn} \leftarrow 1$
	INR	M	Rn	0011	:10 DH:	DL	1	r	$\mathrm{M} \leftarrow$ (Rn reg.)
	IN	M	Pn	1110	:10 DH:	DL	1	Pn	$\mathrm{M} \leftarrow(\mathrm{Pn})$
	OUT	M	Ph	1110	111:DH:	DL	1	Pn	$\mathrm{Pn} \leftarrow \mathrm{M}$
	SPB	Pn	N	0000	0010	Pn		N	(Pn) $\mathrm{N} \leftarrow 1$
	RPB	Pn	N	0000	\| 0011	Pn	,	N	(Pn) $\mathrm{N} \leftarrow 0$
	TPT	Pn	N	1111	11100	Pn	+	N	if (Pn) $\mathrm{N}=$ all 1, then skip
	TPF	Pn	N	1111	: 1101	Pn	I	N	if (Pn) $\mathrm{N}=$ all 0 , then skip
	LCDA	M	1	1100	:00 DH:	DL	,	DIGIT	LCD (DIGIT) $\leftarrow \mathrm{M}$
	LCDB	M	1	1100	!01 DH:	DL	1	DIGIT	
	LCPA	M	1	1100	10 DH:	DL		DIGIT	LCD (DIGIT) \leftarrow Logic
	LCPB	M	1	1100	111 DH	DL	+	DIGIT	Array $\leftarrow \mathrm{M}$
	HALT	1		0000	: 0000 :	0100	!	1	HALT reg. $\leftarrow \mathrm{I}$, then CPU Stop
	CKSTP			0000	10000	0101	T		Stop Xtal OSC
	NOP			0000	: 0000	0000	+		No operation

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

■ Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1998. Specifications and information herein are subject to change without notice.

