CMOS IC

LC86P5420

8-Bit Single Chip Microcontroller with the One-Time Programmable PROM

Preliminary

Overview

The LC86P5420 is a CMOS 8-bit single chip microcontroller with one-time PROM for the LC865500 / LC865400 series.

This microcontroller has the function and the pin description of the LC865500 / LC865400 series mask ROM version, and the 20K-byte PROM.

Features

(1) Option switching by PROM data

The option function of the LC865400 series can be specified by the PROM data.

The LC86P5420 can be checked the functions of the trial pieces using the mass production board.

(2) Internal one-time PROM capacity : 20736 bytes

(3) Internal RAM capacity

: 512 bytes

Mask ROM version	PROM capacity	RAM capacity
LC865520	20480 bytes	512 bytes
LC865516	16384 bytes	512 bytes
LC865512	12288 bytes	512 bytes
LC865508	8192 bytes	512 bytes
LC865504	4096 bytes	512 bytes
LC865412	12288 bytes	224 bytes
LC865408	8192 bytes	224 bytes
LC865404	4096 bytes	224 bytes

- (4) Operating supply voltage
 (5) Instruction cycle time
 : 4.5V to 6.0V
 : 1.0µs to 366µs
- (6) Operating temperature $: -30^{\circ}\text{C}$ to $+70^{\circ}\text{C}$

(b) Operating temperature : -50 C to $\pm/0 \text{ C}$

(7) The pin and the package compatible with the LC865400 series mask ROM devices

- (8) Applicable mask ROM version : LC3
- : LC865520 / LC865516 / LC865512 / LC865508 / LC865504 LC865412 / LC865408 / LC865404

(9) Factory shipment

- : DIP42S, QFP48E
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Notice for use

The LC86P5420 is provided for the first release and small shipping of the LC865500 / LC865400 series. At using, take notice of the followings.

(1) A point of difference the LC86P5420 and the LC865500 / LC865400 series

Item	LC86P5420	LC865520 / 16 / 12 / 08 / 04 LC865412 / 08 / 04
Operation after reset releasing	The option is specified by degrees until 3ms after going to a 'H' level to the reset terminal. The program is executed from 00H of the program counter.	The program is executed from 00H of the program counter immediately after going to a 'H' level to the reset terminal.
Operating supply voltage range (VDD)	4.5V to 6.0V	2.5V to 6.0V
Power dissipation	Refer to 'electrical characteristics' of	n the semiconductor news.

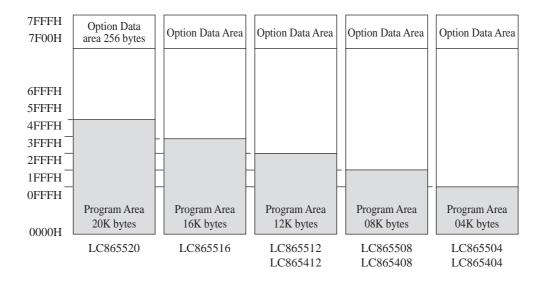
The LC86P5420 functions same as the followings while resetting ; LC865520 / 16 / 12 / 08 / 04, LC865412 / 08 / 04.

The LC86P5420 uses 256 bytes that is addressed on 7F00H to 7FFFH in the program memory as the option configulation data area.

•A kind of the option corresopnding of the LC86P5420

A kind of option	Pins, Circuits	Contents of the option
Input / output form of	Port 0	1. N-channel open drain output
input / output ports		2. CMOS output *1
		1. Pull-up MOS Tr. provided
		2. Pull-up MOS Tr. not provided *2
	Port 1	1. Input : Programmable pull-up MOS Tr.
		Output : N-channel open drain
		2. Input : Programmable pull-up MOS Tr.
	*1	Output : CMOS
	Port 3	1. Input : No Programmable pull-up
		MOS Tr.
		Output : N-channel open drain
		2. Input : Programmable pull-up MOS Tr.
	*1	Output : CMOS

*1) Specified in bit


*2) Specified in nibble unit. Pull-up MOS Tr. is not provided in N-channel open drain output port.

(2) Option

The option data is created by the option specified program "SU86K.EXE". The created option data is linked to the program area by the linkage loader "L86K.EXE".

(3) ROM space

The LC86P5420 and LC865500 / LC865400 series use 256 bytes that is addressed on 7F00H to 7FFFH in the program memory as the option specified data area. These program memory capacity are 20480 bytes that is addressed on 0000H to 4FFFH.

(4) Ordering information

- When ordering the identical mask ROM and PROM devices simultaneously. Provide an EPROM containing the target memory contents together with the separate order forms for each of the mask ROM and PROM versions.
- 2. When ordering a PROM device. Provide an EPROM containing the target memory contents together with an order form.

How to use

(1) Create a programming data for LC86P5420

Programming data for EPROM of the LC86P5420 is required.

Debugged evaluation file (EVA file) must be converted to an INTEL-HEX formatted file (HEX file) with file converter program, EVA2HEX.EXE. The HEX file is used as the programming data for the LC86P5420.

(2) How to program for the EPROM

The LC86P5420 can be programmed by the EPROM programmer with attachment ; W86EP5420D, W86EP5420Q.

• Recommended EPROM programmer

Productor	EPROM programmer
Advantest	R4945, R4944, R4943
Andou	AF-9704
AVAL	PKW-1100, PKW-3000
Minato electronics	MODEL1890A

• "27512 (Vpp=12.5V) Intel high speed programming" mode available. The address must be set to "0000H to 7FFFH" and a jumper (DASEC) must be set to 'OFF' at programming.

(3) How to use the data security function

"Data security" is the disabled function to read the data of the EPROM.

The following is the process in order to execute the data security.

- 1. Set 'ON' the jumper of attachment.
- 2. Program again. Then the EPROM programmer displays the error. The error means normally activity of the data security. It is not a trouble of the EPROM programmer or the LSI.

Notes

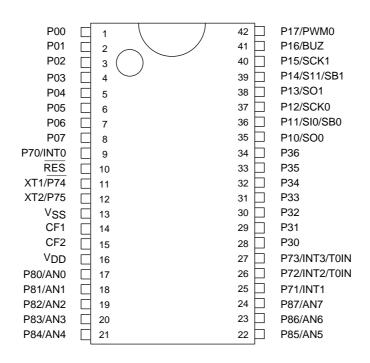
- Data security is not executed when the data of all address have 'FFH' at the sequence 2 above.
- The programming by a sequential operation "BLANK=>PROGRAM=>VERIFY" cannot be executed data security at the sequence 2 above.

Data security

• Set 'OFF' to the jumper after executing the data security.

Data security

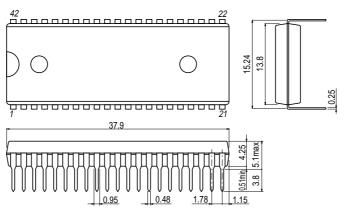
Not data security


W86EP5420D

Not data security

W86EP5420Q

Pin Assignment


•DIP42S

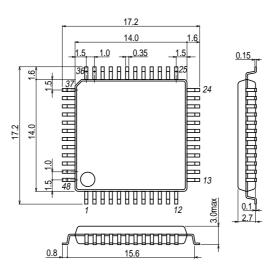
ILC00019

Package Dimension

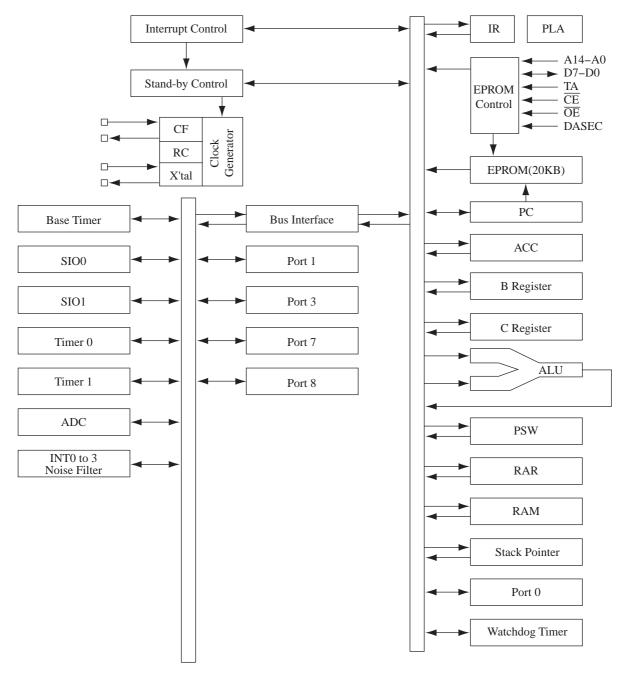

(unit : mm) 3025B

SANYO : DIP-42S(600mil)

Pin Assignment


•QFP48E

ILC00020


Package Dimension

(unit : mm) 3156

SANYO : QIP-48E

System Block Diagram

Pin Description

Pin name	I/O	Function description	Option	PROM mode
VSS		Power pin (-)		
VDD		Power pin (+)		
PORT0	I/O	•8-bit input / output port	Pull-up resistor :	
P00 - P07		Input / output in nibble units	Provided / Not provided	
		•Input for port 0 interrupt	(specify every 4-bit)	
			Output form :	
		•15V withstand at N-channel open	CMOS / N-channel open drain	
		drain output	(specify in bit)	
PORT1	I/O		•Output form :	Data line
P10 - P17		Input / output can be specified	-	D0 to D7
		in bit unit.	(specify in bit)	
		•Other pin functions		
		P10 SIO0 data output		
		P11 SIO0 data input /		
		bus input / output		
		P12 SIO0 clock input / output		
		P13 SIO1 data output		
		P14 SIO1 data input /		
		bus input / output		
		P15 SIO1 clock input / output		
		P16 Buzzer output		
		P17 Timer1 (PWM0) output		
PORT3	I/O		Pull-up resistor :	
P30 - P36	1,0		Provided / Not provided	
150 150			Output form :	
		drain output	CMOS / N-channel open drain	
PORT7		•4-bit input / output port	ettios / it enamer open dram	
		Input / output in bit unit		
		•2-bit input port		
		•Other pin functions		
P70 - P73	I/O			PROM control
170-175	170	input / N-channel Tr. output for		signals
		watchdog timer		•DASEC (*1)
P74, P75	Ι	P71 : INT1 input / HOLD release input		$\bullet \overline{OE}$ (*2)
1 /4, 1 / 5	1	P72 : INT2 input / timer 0 event input		• \overline{CE} (*3)
		P73 : INT3 input with noise filter /		CL(3)
		timer 0 event input		
		P74 : Input pin XT1 for 32.768kHz		
		crystal oscillation		
		P75 : Output pin XT2 for 32.768kHz		
		crystal oscillation		
		-		
		•Interrupt received form,		
		vector address		
			low vector	
			evel	
		falling		
			hable 03H	
		INT1 enable enable disable enable en		
		INT2 enable enable enable disable dis		
		INT3 enable enable enable disable dis	sable 1BH	

Pin name	I/O	Function description	Option	PROM mode
PORT8				
P80 - P83	Ι	•4-bit input port		TA (*4)
P84 - P87	I/O	•4-bit input / output port		
		Input / output can be specified in		
		bit unit		
		•Other function		
		AD input port (AN7 to AN0)		
RES	Ι	Reset pin		
XT1 / P74	Ι	•Input pin for the 32.768kHz cyrstal		
		oscillation		
		•Other function		
		XT1 : Input port P74		
		In case of non use, connect to V_{DD}		
XT2 / P75	0	•Output pin for the 32.768kHz		
		crystal oscillation		
		•Other function		
		XT2 : Input port P75		
		In case of non use, connect to VDD		
		at using as port or unconnect at using		
		as oscillation.		
CF1	Ι	Input pin for the ceramic resonator		
		oscillation		
CF2	0	Output pin for the ceramic resonator		
		oscillation		

■ All of port options except the pull-up resistor option of Port 0 can be specified in a bit unit.

*1 Memory select input for data security

- *2 Output enable input
- *3 Chip enable input
- *4 TA \rightarrow PROM control signal input

Para	meter	Symbol	Pins	Conditions			Ratings		unit
		-			VDD [V]	min.	typ.	max.	
	voltage	VDDMAX		V _{DD}		-0.3		+7.0	V
Input v	oltage	VI(1)	•Ports 74, 75			-0.3		VDD+0.3	
			•Ports 80, 81, 82, 83						
			•RES						
Input /	-	VIO(1)	•Port 1			-0.3		VDD+0.3	
voltage			•Ports 70, 71, 72, 73						
			•Ports 84, 85, 86, 87						
			•Ports 0,3 at CMOS						
			output option						
		VIO(2)	Ports 0, 3 at N-ch			-0.3		15	
			open drain output						
			option						
High	Peak	IOPH	•Ports 0, 1, 3	CMOS output		-10			mA
Level	output		•Ports 71, 72, 73	At each pins					
output	current		•Ports 84, 85, 86, 87						
current	Total	Σ IOAH(1)	Ports 0, 1	The total all		-30			
	output			pins					
	current	Σ IOAH(2)	Port 3	The total all		-15			
				pins					
		$\Sigma IOAH(3)$	•Ports 71, 72, 73	The total all		-10			
			•Ports 84, 85, 86, 87	pins					
Low	Peak	IOPL(1)	Ports 0, 1, 3	At each pins				20	
Level	output	IOPL(2)	•Ports 70, 71, 72, 73	At each pins				15	
output	current		•Ports 84, 85, 86, 87						
current	Total	Σ IOAL(1)	Ports 0, 1, 70	The total all				60	
	output			pins					
	current	$\Sigma IOAL(2)$	Port 3	The total all				40	
				pins					
		$\Sigma IOAL(3)$	•Ports 71, 72, 73	The total all				20	
			•Ports 84, 85, 86, 87	pins					
Power		Pd max (1)	DIP42S	$Ta=-30$ to $+70^{\circ}C$				630	mW
dissipat	ion	Pd max (2)	QFP48E	Ta=-30 to +70°C				410	
(max.)			-						
Operati	ng	Topg				-30		70	°C
tempera									
range									
Storage	:	Tstg				-65		150	
tempera									
range									

1. Absolute Maximum Ratings at $V_{SS} = 0V$ and $Ta = 25^{\circ}C$

2. Recommended Operating Range at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $V_{SS}=0V$

Parameter	Symbol	Pins	Conditions	XX FX FX FX FX FX FX FX	· · · ·	Ratings		unit
				VDD [V]	min.	typ.	max.	
Operating supply voltage range	VDD	VDD	0.98µs≤ tCYC tCYC≤400µs		4.5		6.0	V
HOLD voltage	VHD	VDD	RAMs and Registers hold voltage at HOLD mode.		2.0		6.0	
Input high voltage	VIH(1)	Port 0 at CMOS output	Output disable	4.5 to 6.0	0.33VDD +1.0		VDD	
	VIH(2)	Port 0 at N-ch open drain output option.	Output disable	4.5 to 6.0	0.75VDD		13.5	
	VIH(3)	•Port 1 •Ports 72, 73 •Port 3 at CMOS output	Output disable	4.5 to 6.0	0.75VDD		VDD	
	VIH(4)	Port 3 at N-ch open drain output option.		4.5 to 6.0			13.5	
	VIH(5)	•Port 70 Port input / interrupt •Port 71 •RES	Output disable	4.5 to 6.0	0.75VDD		VDD	
	VIH(6)	Port 70 Watchdog timer	Output disable	4.5 to 6.0	0.9VDD		VDD	
	VIH(7)	•Port 8 •Ports 74, 75	Output disable Using as port	4.5 to 6.0	0.75VDD		VDD	
Input low voltage	VIL(1)	Port 0 at CMOS output option	Output disable	4.5 to 6.0	VSS		0.2VDD	
	VIL(2)	Port 0 at N-ch open drain output option.	Output disable	4.5 to 6.0	VSS		0.25V _{DD}	
	VIL(3)	•Ports 1, 3 •Ports 72, 73	Output disable	4.5 to 6.0	VSS		0.25V _{DD}	
	VIL(4)	•Port 70 Port input / interrupt •Port 71 •RES	Output disable	4.5 to 6.0	VSS		0.25VDD	
	VIL(5)	Port 70 Watchdog timer	Output disable	4.5 to 6.0	VSS		0.8VDD -1.0	
	VIL(6)	•Port 8 •Ports 74, 75	Output disable Using as port	4.5 to 6.0	VSS		0.25V _{DD}	
Operation cycle time	tCYC			4.5 to 6.0	0.98		400	μs

Parameter	Symbol	Pins	Conditions			Ratings		- unit
Faranieter	Symbol	FIIIS	Conditions	VDD [V]	min.	typ.	max.	uIIIt
Oscillation fre-	FmCF(1)	CF1, CF2	•6MHz (ceramic	4.5 to 6.0	5.88	6	6.12	MHz
quency range			resonator oscil-					
(Note 1)			lation)					
			•Refer to figure 1					
	FmCF(2)	CF1, CF2	•3MHz (ceramic	4.5 to 6.0	2.94	3	3.06	
			resonator oscil-					
			lation)					
			•Refer to figure 1					
	FmRC		RC oscillation	4.5 to 6.0	0.3	0.8	3.0	
	FsXtal	XT1, XT2	•32.768kHz	4.5 to 6.0		32.768		kHz
			(crystal oscillation)					
			•Refer to figure 2					
Oscillation	tmsCF(1)	CF1, CF2	•6MHz (ceramic	4.5 to 6.0		0.05	0.50	ms
stable time			resonator oscil-					
period			lation)					
(Note 1)			•Refer to figure 3					
	tmsCF(2)	CF1, CF2	•3MHz (ceramic	4.5 to 6.0		0.10	1.00	
			resonator oscil-					
			lation)					
			•Refer to figure 3					
	tssXtal	XT1, XT2	•32.768kHz	4.5 to 6.0		1.00	1.50	S
			(crystal oscillation)					
			•Refer to figure 3					

(Note 1) The oscillation constant is shown on table 1 and table 2.

Parameter	Symbol	Pins	Conditions			Ratings		unit
	-			VDD [V]	min.	typ.	max.	
Input high current	IIH(1)	Ports 0, 3 of Open drein output	•Output disable •VIN=13.5V (including off-leak current of the				5	μA
	IIH(2)	•Port 0 without	output Tr.) •Output disable	45 to 60			1	-
		•Port 0 without pull-up MOS Tr. •Ports 1, 3 •Ports 70, 71, 72, 73 •Port 8	•Pull-up MOS Tr. OFF.				1	
	IIH(3)	RES	VIN=VDD	4.5 to 6.0			1	1
	IIH(4)	Ports 74, 75	VIN=VDD at using as port	4.5 to 6.0			1	
Input low current	IIL(1)	 Ports 1, 3, Port 0 without pull-up MOS Tr. Ports 70, 71, 72, 73 Port 8 	•Output disable •Pull-up MOS Tr. OFF. •VIN=VSS (including off-leak current of the output Tr.)		-1			_
	IIL(2)	RES	VIN=VSS	4.5 to 6.0	-1			-
	IIL(3)	Ports 74, 75	VIN=VSS at using as port	4.5 to 6.0	-1			
Output high voltage	VOH(1)	Ports 0, 1, 3 of CMOS output	IOH=-1.0mA	4.5 to 6.0	V _{DD} -1			V
	VOH(2)	•Ports 71, 72, 73 •Ports 84, 85, 86, 87	IOH=-0.1mA	4.5 to 6.0	V _{DD} -0.5			
Output low	VOL(1)	Ports 0, 1, 3	IOL=10mA	4.5 to 6.0			1.5	
voltage	VOL(2)		IOL=1.6mA	4.5 to 6.0			0.4	4
	VOL(3)	•Ports 71, 72, 73 •Ports 84, 85, 86, 87	IOL=1.6mA	4.5 to 6.0			0.4	
	VOL(4)	Port 70	IOL=1.0mA	4.5 to 6.0	1.7	40	0.4	10
Pull-up MOS Tr. resistor	Rpu	•Ports 0, 1, 3 •Ports 70, 71, 72, 73 •Ports 84, 85, 86, 87		4.5 to 6.0	15	40	70	kΩ
Hysteresis voltage	VHIS	•Port 1 •Ports 70, 71, 72, 73 •RES	Output disable	4.5 to 6.0		0.1V _{DD}		V
Pin capacitance	СР	All pins	•f=1MHz Unmeasurement terminals for input are set to VSS level. •Ta=25°C	4.5 to 6.0		10		pF

3. Electrical Characteristics at Ta= -30° C to $+70^{\circ}$ C, VSS=0V

		meter	Symbol	Pins	Conditions			Ratings		unit
	r ai a	ineter	•			VDD [V]	min.	typ.	max.	
		Cycle	tCKCY(1)	SCK0, SCK1	Refer to figure 5	4.5 to 6.0	2			tCYC
		Low	tCKL(1)			4.5 to 6.0	1			
	ock	level								
	clc	width								
	Input clock	High	tCKH(1)			4.5 to 6.0	1			
	In	level								
		pulse								
ĸ		width			II	15.0	2			-
Serial clock		Cycle	tCKCY(2)	SCK0, SCK1	•Use pull-up resistor (1kΩ)	4.5 to 6.0	2			
rial					when open drain					
Sei		Low	tCKL(2)	-	output.	4.5 to 6.0		1 / 2 tCKCY		-
	Output clock	level	tCRL(2)		•Refer to figure 5	4.5 10 0.0		1 / 2 tCKC 1		
	t cl	pulse			iterer to ligure 5					
	tpu	width								
	õ	High	tCKH(2)	-		4.5 to 6.0		1 / 2 tCKCY		
		level								
		pulse								
		width								
ıt		ta set-up	tICK	•SI0, SI1	•Data set-up to	4.5 to 6.0	0.1			μs
ldu	tim			•SB0, SB1	SCK0, 1					
Serial input		ta hold	tCKI		•Data hold from	4.5 to 6.0	0.1			
Ser	tim	e			SCK0, 1					
		1 1		000.001	•Refer to figure 5	15.0			7. (12. (0)(0)	-
	tim		tCKO(1)	•SO0, SO1 •SB0, SB1	•Use pull-up resistor (1kΩ)	4.5 to 6.0			7 / 12 tCYC +0.2	
		rial clock		•300, 301	when open drain				+0.2	
nt	``	extrnal			output.					
utp		ock)			output.					
Serial output		tput delay	tCKO(2)	-	•Data hold from	4.5 to 6.0			1/3 tCYC	-
eri	tim		··(-)		SCK0, 1				+0.2	
S		rial clock			•Refer to figure 5					
	`	internal								
	clo	ock)								

4. Serial Input / Output Characteristics at Ta=-30°C to +70°C, V_{SS}= 0V

Demonster	Coursels a 1	Dima	Canditiana			Ratings		
Parameter	Symbol	Pins		VDD [V]	min.	typ.	max.	unit
High / low	tPIH(1)	•INT0, INT1	•Interrupt accept-	4.5 to 6.0	1			tCYC
level pulse	tPIL(1)	•INT2 / TOIN	able					
width			•Timer0-countable					
	tPIH(2)	INT3 / TOIN	•Interrupt accept-	4.5 to 6.0	2			1
	tPIL(2)	(The noise	able					
		rejection clock	•Timer0-countable					
		select to 1 / 1.)						
	tPIH(3)	INT3 / TOIN	•Interrupt accept-	4.5 to 6.0	32			1
	tPIL(3)	(The noise	able					
		rejection clock	•Timer0-countable					
		select to 1 / 16.)						
	tPIH(4)	INT3 / TOIN	•Interrupt accept-	4.5 to 6.0	128			1
	tPIL(4)	(The noise	able					
		rejection clock	•Timer0-countable					
		select to 1 / 64.)						
	tPIL(5)	RES	Reset acceptable	4.5 to 6.0	200			μs

5. Pulse Input	Conditions at Ta= -30° C to $+70^{\circ}$ C,	VSS = 0V
----------------	--	----------

6. A / D Converter Characteristics at Ta=-30°C to +70°C , VSS = 0V

Domenator	Symbol	Pins	Conditions		Ratings			unit
Parameter				VDD [V]	min.	typ.	max.	unit
Resolution	N			4.5 to 6.0		8		bit
Absolute	ET			4.5 to 6.0			±1.5	LSB
precision								
(Note 2)								
Conversion	tCAD		AD conversion	4.5 to 6.0	15.68		65.28	μs
time			time=16 X tCYC		(tCYC =		(tCYC =	
			(ADCR2=0)		0.98µs)		4.08µs)	
			(Note 3)					
			AD conversion	-	31.36		130.56	
			time=32 X tCYC		(tCYC =		(tCYC =	
			(ADCR2=1)		0.98µs)		4.08µs)	
			(Note 3)					
Analog input	VAIN	AN0 to AN7		4.5 to 6.0	VSS		VDD	V
voltage range								
Analog port	IAINH		VAIN=VDD	4.5 to 6.0			1	μA
input current	IAINL		VAIN=VSS	4.5 to 6.0	-1			

(Note 2) Absolute precision excepts quantizing error (±1/2 LSB).

(Note 3) The conversion time means the time from executing the AD conversion instruction to setting the complete digital conversion value to the register.

Parameter	Symbol	Pins	Conditions			Ratings		unit
	_			VDD [V]	min.	typ.	max.	unn
Current	IDDOP(1)	VDD	•FmCF=6MHz	4.5 to 6.0		14	26	mA
dissipation			Ceramic resona-					
during basic			tor oscillation					
operation			•FsXtal=32.768kHz	z				
(Note 4)			crystal oscillation					
			•System clock :					
			CF oscillation					
			•Internal RC					
			oscillation stops	.				
			•1 / 1 divider					
	IDDOP(2)		•FmCF=3MHz	4.5 to 6.0		6.5	14	1
			Ceramic resona	-				
			tor oscillation					
			•FsXtal=32.768kHz					
			crystal oscillation					
			•System clock :					
			CF oscillation					
			•Internal RC					
			oscillation stops.					
			•1 / 2 divider					
	IDDOP(3)	-	•FmCF=0Hz	4.5 to 6.0		4	12	1
			(when oscillation					
			stops).					
			•FsXtal=32.768kHz					
			crystal oscillation	1				
			•System clock :					
			RC oscillation					
			•1 / 2 divider					
	IDDOP(4)	-	•FmCF=0Hz	4.5 to 6.0		3.5	9	-
			(when oscillation	1			-	
			stops).					
			•FsXtal=32.768kHz					
			crystal oscillation					
			•System clock :					
			crystal oscillation					
			•Internal RC					
			oscillation stops.					
			•1 / 2 divider					

7. Current Dissipation Characteristics at Ta=-30°C to +70°C, VSS = 0V

Parameter	Symbol	Pins	Conditions Vap IV		Ratings			unit
				VDD [V]	min.	typ.	max.	
Current dissipation HALT mode (Note 4)	IDDHALT(1)	VDD	•HALT mode •FmCF=6MHz Ceramic resona- tor oscillation •FsXtal=32.768kHz crystal oscillation •System clock :	4.5 to 6.0		4	9	mA
			CF oscillation •Internal RC oscillation stops. •1 / 1 devider					
	IDDHALT(2)		•HALT mode FmCF=3MHz Ceramic resona- tor oscillation •FsXtal=32.768kHz crystal oscillation •System clock : CF oscillation •Internal RC oscillation stops. •1 / 2 devider			2.2	5	
	IDDHALT(3)		•HALT mode FmCF=0Hz (when oscillation stops). •FsXtal=32.768kHz crystal oscillation •System clock : RC oscillation •1 / 2 devider	4.5 to 6.0		400	1600	μΑ
	IDDHALT(4)		 HALT mode FmCF=0Hz (when oscillation stops). FsXtal=32.768kHz crystal oscillation System clock : 32.768kHz Internal RC oscillation stops. 1 / 2 devider 	4.5 to 6.0		25	100	
Current dissipation HOLD mode (Note 4)	IDDHOLD	VDD	HOLD mode	4.5 to 6.0		0.05	30	

(Note 4) The currents of output transistors and pull-up MOS transistors are ignored.

A kind of oscillation	Producer	Oscillator	C1	C2
6MHz ceramic resonator	Murata	CSA 6.00MG	33pF	33pF
oscillation		CST 6.00MGW	on chip	
	Kyocera	KBR-6.0MSA	33pF	33pF
		PBRC 6.00A (chip type)	33pF 33pl	
		KBR-6.0MKS	on chip	
		PBRC 6.00B (chip type)		
3MHz ceramic resonator	Murata	CSA 3.00MG	33pF	33pF
oscillation		CST 3.00MGW	on chip	
	Kyocera	KBR-3.0MS	47pF	47pF

 Table 1. Ceramic resonator oscillation guaranteed constant (main-clock)

* Both C1 and C2 must use K rank (±10%) and SL characteristics.

Table 2. Crystal oscillation guaranteed constant (sub-clock)

A kind of oscillation	Producer	Oscillator	C3	C4
32.768kHz crystal	Kyocera	KF-38G-13P0200	18pF	18pF
oscillation				

* Both C3 and C4 must use J rank ($\pm 5\%$) and CH characteristics.

(It is about the application which is not in need of high precision. Use K rank ($\pm 10\%$) and SL characteristics.)

•Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest possible pattern length.
•If you use other oscillators herein, we provide no guarantee for the characteristics.

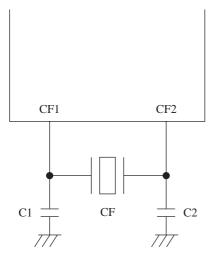


Figure 1. Main-clock circuit Ceramic resonator oscillation

ILC00059

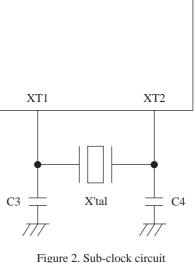


Figure 2. Sub-clock circui Cryatal oscillation

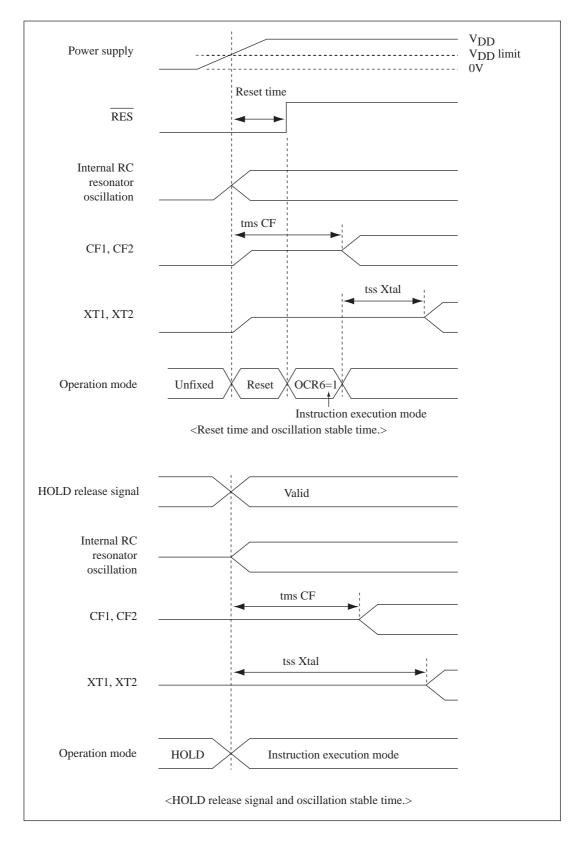
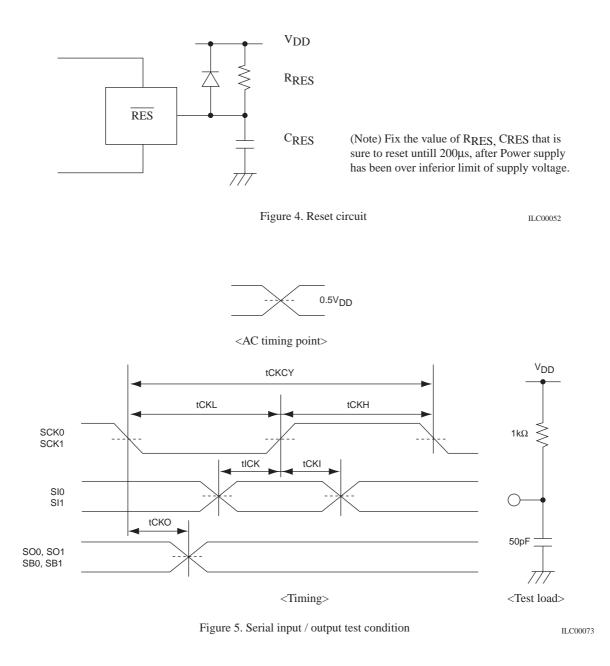



Figure 3. Oscillation stable time

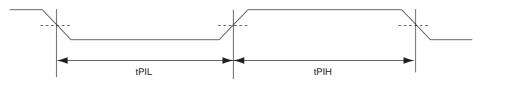
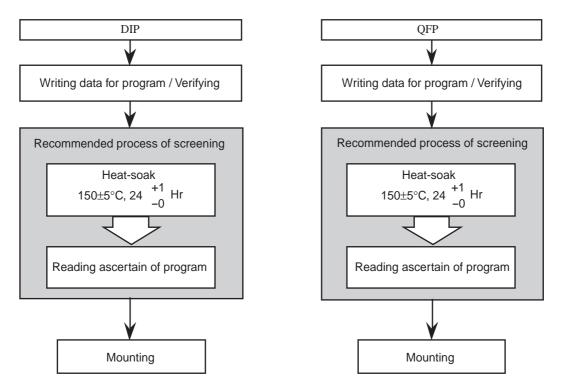
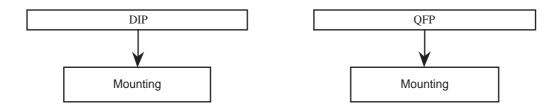


Figure 6. Pulse input timing condition


Notice for use

- The construction of the one-time programmable microcomputer with a blank built-in PROM makes it impossible for Sanyo to completely factory-test it before shipping. To probe reliability of the programmed devices, the screening procedure shown in the following figure should always be followed.
- It is not possible to perform a writing test on the blank PROM. 100% yield, therefore, cannot be guaranteed.
- Keeping the dry packing The environment must be held at a temparature of 30°C or less and a humidity level of 70% or less.
- After opening the packing


After opening the packing, a controlled environment must be maintained until soldering. The environment must be held at a temperature of 30°C or less and a humidity level of 70% or less. Please solder within 96 hours.

a. Shipping with a blank PROM (Programming the data by yourself)

This microcomputer is provided DIP / QFP packages, but the condition before mounting is different. Refer to the mounting procedure as follows.

b. Shipping with a programmed PROM (Programming the data by Sanyo)

memo :

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2001. Specifications and information herein are subject to change without notice.