


Chip Type 2C3960 Geometry 0003 Polarity NPN

Generic Packaged Part:

2N3960

Chip type **2C3960** by Semicoa Semiconductors provides performance similar to these devices.

Part Numbers:

2N3960, 2N3960UB, SD3960F, SQ3960, SQ3960F

Product Summary:

APPLICATIONS:

Designed for high-speed current-mode logic switching.

Features:

Mechanical Specifications					
Metallization	Тор	Al - 15 kÅ min.			
	Backside	Au - 6.5 kÅ nom.			
Bonding Pad Size	Emitter	2.7 mils x 2.7 mils			
	Base	2.7 mils x 2.7 mils			
Die Thickness	8 mils nominal				
Chip Area	16 mils x 16 mils				
Top Surface	Silox Passivated				

Electrical Characteristics T _A = 25°C						
Parameter	Test conditions	Min	Max	Unit		
BV _{CEO}	$I_{\rm C} = 10.0 {\rm mA}$	12		V dc		
BV _{CBO}	$I_C = 10 \mu\text{A}$	20		V dc		
BV _{EBO}	I _E = 10.0 mA	4.5		V dc		
I _{CEX}	$V_{CE} = 10 \text{ V}, V_{EB} = 2.0 \text{ V}$		5.0	nA		
h _{FE1}	$I_C = 1.0 \text{ mA dc}, V_{CE} = 1.0 \text{ V}$	25				
h _{FE2}	$I_C = 10 \text{ mA dc}, V_{CE} = 1.0 \text{ V}$	40	400			
h _{FE3}	$I_C = 30 \text{ mA dc}, V_{CE} = 1.0 \text{ V}$	25				
V _{CE(sat)}	$I_{\rm C} = 30 \text{ mA dc}, I_{\rm B} = 3.0 \text{ mA}$		0.3	V dc		

Due to limitations of probe testing, only dc parameters are tested. This must be done with pulse width less than 300 µs, duty cycle less than 2%.