TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com ### DESCRIPTION The SC1156 is a low-cost, full featured synchronous, voltage-mode controller designed for use in single ended power supply applications where efficiency is of primary concern. Synchronous operation allows for the elimination of heat sinks in many applications. The SC1156 is ideal for implementing DC/DC converters needed to power advanced microprocessors such as Pentium® II (Klamath), in both single and multiple processor configurations. Internal level-shift, high-side drive circuitry, and preset shoot-thru control, allows for use of inexpensive n-channel power switches. SC1156 features include an integrated 5-bit $V_{\rm ID}$ DAC, temperature compensated voltage reference, triangle wave oscillator, current limit comparator, frequency shift over-current protection, and an accessible, internally compensated error amplifier. Power good signaling, logic compatible shutdown, and over voltage protection are also provided. The SC1156 operates at a fixed 200KHz, providing an optimum compromise between efficiency, external component size, and cost. ### **FEATURES** - Low cost / full featured - Synchronous operation - 5 Bit V_□ DAC programmable output - On-chip power good and OVP functions - Designed to meet Intel VRM8.1 (Klamath) ### **APPLICATIONS** - Pentium[®] II (Klamath) Core Supply - Multiple MicroProcessor Supplies - Voltage Regulation Modules (VRM) - Programmable Power Supplies - High Efficiency DC/DC Conversion ### ORDERING INFORMATION | DEVICE (1) | PACKAGE | TEMP. (T _J) | | | |------------|---------|-------------------------|--|--| | SC1156CSW | SO-20 | 0 - 125°C | | | #### Note: (1) Add suffix 'TR' for tape and reel. ### PIN CONFIGURATION ### **BLOCK DIAGRAM** # **ABSOLUTE MAXIMUM RATINGS** | Parameter | Symbol | Maximum | Units | | |--|-----------------------|-------------|-------|--| | V _{cc} to GND | V _{IN} | -0.3 to +15 | V | | | PGND to GND | | ± 1 | V | | | BST to GND | | -0.3 to +26 | V | | | Operating Temperature Range | T _A | 0 to +70 | °C | | | Junction Temperature Range | T _J | 0 to +125 | °C | | | Storage Temperature Range | T _{STG} | -65 to +150 | °C | | | Thermal Resistance Junction to Case | $\theta_{ extsf{JC}}$ | 30 | °C/W | | | Thermal Resistance Junction to Ambient | θ_{JA} | 95 | °C/W | | | Lead Temperature (Soldering) 10 sec | T _{LEAD} | 300 | °C | | ## **ELECTRICAL CHARACTERISTICS** (Unless otherwise noted: V_{CC} = 11.4V to 12.6V; GND = PGND = 0V; FB = V_{o} ; 0mV < (CS(+) - CS(-)) < 60mV; T_{J} = 25°C) | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |------------------------------|---|--------------------------|-----|-----|-------| | Output Voltage | $I_{\circ} = 2A^{(1)}$ | See Output Voltage Table | | | | | Supply Voltage | V _{cc} | 4.2 | | 15 | V | | Supply Current | V _{cc} = 12.0V | | 5 | | mA | | Load Regulation | $I_{\rm O} = 0.3$ A to 15A ⁽¹⁾ | | 1 | | % | | Line Regulation | All VID codes ⁽¹⁾ | | 0.5 | | % | | Gain (A _{oL}) | V _{OSENSE} to V _O | | 35 | | dB | | Current Limit Voltage | | 60 | 70 | 80 | mV | | Oscillator Frequency | | 180 | 200 | 220 | kHz | | Oscillator Max Duty Cycle | | 90 | 95 | | % | | DH Sink/Source Current | BST _H - DH = 4.5V, DH - PGND _H = 2V | 1 | | | А | | DL Sink/Source Current | BST _L - DL = 4.5V, DL - PGND _L = 2V | 1 | | | А | | OVP threshold voltage | | | 120 | | % | | OVP source current | V _{OVP} = 3V | 10 | | | mA | | Power good threshold voltage | | 90 | | 110 | % | | Dead time | | 50 | 100 | | ns | ### NOTE: (1) Specification refers to Application Circuit (Figure 1). # PROGRAMMABLE SYNCHRONOUS DC/DC SC1156 CONTROLLER FOR ADVANCED MICROPROCESSORS PRELIMINARY - April 13, 1998 | PIN DESCRIPTION | | | | | |-----------------|-------------------------|--|--|--| | Pin # | Pin Name | Pin Function | | | | 1 | GND | Small Signal Analog and Digital Ground | | | | 2 | VCC | Chip Supply Voltage | | | | 3 | OVP | High Signal Out if V _o > Setpoint + 20% | | | | 4 | PWRGOOD (1) | Open collector logic output, high if V _o within 10% of setpoint | | | | 5 | CS(-) | Current Sense Input (negative) | | | | 6 | CS(+) | Current Sense Input (positive) | | | | 7 | PGNDH | Power Ground for High Side Switch | | | | 8 | DH | High Side Driver Output | | | | 9 | NC | Not Connected | | | | 10 | PGNDL | Power Ground for Low Side Switch | | | | 11 | DL | Low Side Driver Output | | | | 12 | BSTL | Vcc for Low Side Driver (Boost) | | | | 13 | BSTH | Vcc for High Side Driver (Boost) | | | | 14 | SHUTDOWN ⁽¹⁾ | Logic Low Shuts Down The Converter | | | | 15 | FB | Feedback | | | | 16 | VID4 ⁽¹⁾ | Programming Input (MSB) | | | | 17 | VID3 ⁽¹⁾ | Programming Input | | | | 18 | VID2 ⁽¹⁾ | Programming Input | | | | 19 | VID1 ⁽¹⁾ | Programming Input | | | | 20 | VID0 ⁽¹⁾ | Programming Input (LSB) | | | ### NOTE: (1) All logic inputs and outputs are open collector TTL compatible. ### **APPLICATION CIRCUIT** ### **MATERIALS LIST** Figure 1. | Quantity | Reference | Part/Description | Vendor | Notes | |----------|----------------|------------------|-----------|---| | 6 | C1, C4, C9-C12 | 0.1µF Ceramic | Various | | | 2 | C2, C3 | 820µF/16V | SANYO | MV-GX or equiv. Low ESR | | 4 | C2-C10 | 1500µF/6.3V | SANYO | MV-GX or equiv. Low ESR | | 1 | D1 | 1N4148 | Various | | | 1 | L1 | 4µH | | 8 Turns 16AWG on MICROMETALS T50-52D core | | 2 | Q1, Q2 | See notes | See notes | FET selection requires trade-off between efficiency and cost. Absolute maximum $R_{\text{DS(ON)}}$ = 22 $m\Omega$ | | 1 | R1 | $5m\Omega$ | IRC | OAR-1 Series | | 2 | R2, R3 | 3.9Ω, 5%, 1/8W | Various | | | 1 | R4 | 1kΩ, 1%, 1/8W | Various | | | 2 | R5, R8 | 10kΩ, 5%, 1/8W | Various | | | 1 | R6 | 10Ω, 5%, 1/8W | Various | | | 1 | R7 | 2.32kΩ, 1%, 1/8W | Various | | | 1 | R9 | 100Ω, 5%, 1/8W | Various | | | 1 | U1 | SC1156CSW | SEMTECH | | # PROGRAMMABLE SYNCHRONOUS DC/DC CONTROLLER FOR ADVANCED MICROPROCESSORS SC1156 PRELIMINARY - April 13, 1998 ### **OUTPUT VOLTAGE TABLE** Unless otherwise noted: $V_{CC} = 4.75V \text{ to } 5.25V; \text{ GND} = \text{PGND} = 0V; \text{ FB} = V_{O}; \text{ omV} < (\text{CS(+)} - \text{CS(-)}) < 60\text{mV}; \text{T}_J = 25^{\circ}\text{C})$ | PARAMETER | CONDITIONS | VID | MIN | TYP | MAX | UNITS | |-------------------------------|---|-------|-------|-------|-------|-------| | | | 43210 | | | | | | Output Voltage ⁽¹⁾ | I_{\odot} = 2A in Application Circuit | 00101 | 1.782 | 1.800 | 1.818 | V | | | (Figure 1) | 00100 | 1.832 | 1.850 | 1.868 | V | | | | 00011 | 1.881 | 1.900 | 1.919 | V | | | | 00010 | 1.931 | 1.950 | 1.969 | V | | | | 00001 | 1.980 | 2.000 | 2.020 | V | | | | 00000 | 2.030 | 2.050 | 2.070 | V | | | | 11111 | 1.980 | 2.000 | 2.020 | V | | | | 11110 | 2.079 | 2.100 | 2.121 | V | | | | 11101 | 2.178 | 2.200 | 2.222 | V | | | | 11100 | 2.277 | 2.300 | 2.323 | V | | | | 11011 | 2.376 | 2.400 | 2.424 | V | | | | 11010 | 2.475 | 2.500 | 2.525 | V | | | | 11001 | 2.574 | 2.600 | 2.626 | V | | | | 11000 | 2.673 | 2.700 | 2.727 | V | | | | 10111 | 2.772 | 2.800 | 2.828 | V | | | | 10110 | 2.871 | 2.900 | 2.929 | V | | | | 10101 | 2.970 | 3.000 | 3.030 | V | | | | 10100 | 3.069 | 3.100 | 3.131 | V | | | | 10011 | 3.168 | 3.200 | 3.232 | V | | | | 10010 | 3.267 | 3.300 | 3.333 | V | | | | 10001 | 3.366 | 3.400 | 3 434 | V | | | | 10000 | 3.465 | 3.500 | 3.535 | V | ### NOTE: (1) All VID codes not specifically listed are invalid and cause shutdown exactly as if the shutdown pin had been asserted ### THEORY OF OPERATION The output voltage of the DAC sets the reference voltage at the non-inverting input of the error amplifier which in turn determines the output voltage of the buck converter. The specification lists all available output voltage settings and the corresponding input codes at VID0 through VID4 control pins. These voltages are derived from an internal trimmed bandgap voltage reference. The inverting input of the error amplifier receives its voltage from the VO_{SENSE} pin via a precision resistor divider. The error amplifier itself is transconductance amplifier with an internal load resistor. Loop compensation is provided by the output filter capacitor of the buck converter. The open loop gain is internally set to approximately 40 dB. The internal oscillator uses on-chip capacitor and trimmed precision current sources to set the frequency of oscillation to 200 kHz. The triangular output of the oscillator sets the reference voltage of a comparator at its inverting input. The non-inverting input of the same comparator receives its input voltage from the error amplifier. The timing diagram is shown in Figure 1. When the oscillator output voltage reaches the mosfet driver DRIVEH, which controls the gate drive of an external MOS power device, serving as the switch connected in series with the main inductor. At the same time DRIVEH receives a low to high output voltage change which turns on DRIVEL as soon as the SHOOT-THROUGH CONTROL circuit permits it. As VO_{SENSE} voltage increases, the output voltage of the error amplifier decreases, causing a reduction of the on-time of the external MOS-FET transistor connected to DRIVEH. When the triangular wave of the oscillator output voltage reaches its positive peak value, another event takes place: a one-shot circuit is triggered in order to generate the required pulse to reset the current limit latch, in case it has been triggered by current limit condition. When the triangular oscillator output voltage decreases to the point of equivalence with the reference voltage of the error amplifier, the comparator with hysteresis changes state and DRIVEH turns on the external mosfet, while turning off the DRIVEL stage with some delay determined by the shoot-through control. ### **CHARACTERISTIC CURVES** SC1156 Efficiency in Application Circuit (Figure 1) SC1156 Regulation in Application Circuit (Figure 1) ### **OUTLINE DRAWING SO-20**